Application of the project management methodology synthesis method with fuzzy input data

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.65671

Keywords:

project management, methodology, definition, synthesis method, mathematical model, fuzzy data

Abstract

The definition of a “project management methodology” is clarified. A method of the project management methodology synthesis for a particular project with fuzzy input data is proposed. The method involves the development of a generalized project management methodology. Based on the information presented in the generalized methodology, an expert or a group of experts selects policies, rules, procedures , practices, life cycle and organizational structure of a particular project, assign roles and responsibilities in the project. The experts have the opportunity to set several combinations of the generalized methodology components, which are the most relevant to the project. The problem of selecting the best methodology for a particular project is solved according to the criteria of complexity , cost of management operations and associated risks.

Optimization is carried out with the fuzzy input data. The operation of the given method is shown on the example of the project on the “PTCQR ProjectScopeOptimization” software development for project scope optimization.

Author Biographies

Igor Kononenko, National Technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkiv, Ukraine, 61002

Doctor of technical Science, Professor, head of department

Department of Strategic Management 

Ahmad Aghaee, National Technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Strategic Management 

Svetlana Lutsenko, National Technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkiv, Ukraine, 61002

Department of Strategic Management 

References

  1. Ilas, M. E., Ionescu, S. Ilas, C. (2011). Selecting the appropriate project management process for R&D projects in microelectronics. U.P.B. Sci. Bull – Series C, 73 (1), 105–116.
  2. Fitsilis, P. (2008). Comparing PMBOK and Agile Project Management software development processes. Advances in Computer and Information Sciences and Engineering, 378–383. doi: 10.1007/978-1-4020-8741-7_68
  3. Usman, M., Soomro, T. R., Brohi, M. N. (2014). Embedding project management into XP, SCRUM and RUP. European Scientific Journal, 10 (15), 293–307.
  4. A Guide to the project management body of knowledge (PMBoK guide 5th edition) (2013). USA : PMI Inc., 589.
  5. Karamitsos, I., Apostolopoulos, C., Bugami, M. A. (2010). Benefits Management Process Complements Other Project Management Methodologies. Journal of Software Engineering and Applications, 3 (9), 839–844. doi: 10.4236/jsea.2010.39097
  6. Kononenko, I. V., Kolesnik, M. Je., Lobach, E. V. (2014). Process mnogokriterial'noj optimizacii soderzhanija proekta pri ispol'zovanii metodologii PMBoK. Vіsnik Nacіonal'nogo tehnіchnogo unіversitetu «HPІ». Serіja: Strategіchne upravlіnnja, upravlіnnja portfeljami, programami ta proektami, 2 (1045), 11–17.
  7. Reusch, P. J. A. (2015). On the role of project organization in project management standards and new approaches for project organization. 12th International Scientific–Practical Conference "Project Management in the development of society", Kyiv.
  8. Cheema, A. Arshad, A. A. (2005). Customizing project management methodology. 9th International Multitopic Conference, IEEE INMIC, Karachi, 1–6.
  9. Špundak, M. (2014). Mixed Agile/Traditional Project Management Methodology – Reality or Illusion? Procedia - Social and Behavioral Sciences, 119, 939–948. doi: 10.1016/j.sbspro.2014.03.105
  10. Kononenko, I. V. Aghaee, A. (2016). Model and method for synthesis of project management methodology with fuzzy input data. Bulletin of NTU "KhPI". Series: Strategic management, portfolio, program and project management, 1 (1173), 9–13.
  11. Charvat, J. (2003). Project Management Methodologies: Selecting, Implementing, and Supporting Methodologies and Processes for Projects. John Wiley & Sons, INC, 264.
  12. Whitaker, S. (2014). The benefits of tailoring: Making a project management methodology fit. PMI White Paper. USA: PMI Inc., 23.
  13. Merriam–Webster. Available at: http://www.merriam-webster.com/dictionary/rule
  14. Guseva, A. I., Tihomirova, A. N. (2010). Diskretnaya matematika dlya informatikov i ekonomistov [Discrete mathematics for informatics and economists]. Moscow: NIYaU MIFI, 280.
  15. Zhang, L., Xu, X., Tao, L. (2013). Some Similarity Measures for Triangular Fuzzy Number and Their Applications in Multiple Criteria Group Decision-Making. Journal of Applied Mathematics, 2013, 1–7. doi: 10.1155/2013/538261
  16. Ibragimov, V. A. (2009). Jelementy nechetkoj matematiki. [Elements of fuzzy mathematics]. Azerbajdzhanskaja gosud. neftjanaja akademija Baku, 391.
  17. Leonenkov, A. (2005). Nechetkoe modelirovanie v srede Matlab i fuzzyTECH. [Fuzzy modeling in Matlab and fuzzyTECH] SPb.: BHV–Peterburg, 736.
  18. ISO/IEC 12207:2008 Systems and software engineering – Software life cycle processes. 2nd edition (2008). ISO/IEC, 122.
  19. The Scrum Guide.The Definitive Guide to Scrum: The Rules of the Game. Available at: http://www.scrumguides.org/
  20. Anderson, D. J. (2010). Kanban: Succesful Evolutionary Change for Your Technology Business. Washington: Blue Hole Press, 278.

Published

2016-04-24

How to Cite

Kononenko, I., Aghaee, A., & Lutsenko, S. (2016). Application of the project management methodology synthesis method with fuzzy input data. Eastern-European Journal of Enterprise Technologies, 2(3(80), 32–39. https://doi.org/10.15587/1729-4061.2016.65671

Issue

Section

Control processes