Optimization of process parameters of chrome plating for providing quality indicators of reciprocating pumps parts

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.65719

Keywords:

process parameters, electrochemical chrome plating, spilling solution, microhardness, wear, roughness, taper, machining

Abstract

The analysis of methods of surface hardening to improve wear resistance and corrosion resistance of replacement parts of double-acting reciprocating pump hydraulics is performed. Application of electrochemical chrome plating of parts in the spilling solution, which provides wear-resistant coatings with high surface quality is justified. The influence of process parameters of chrome plating of steel parts: mass ratio of the solution component concentrations (C), current density (i), solution flow rate (v) and solution temperature (T) on the microhardness (Yh), wear (Yw), roughness (Yr) and taper (Yt) using mathematical experimental design is investigated. The optimum values of process parameters which provide maximum microhardness, minimum wear, minimum roughness and  taper of the chromium coating are determined.

It is found that the maximum microhardness of the chromium coating provides minimum wear. Optimum process parameters are within the factor space. To achieve minimum roughness and taper, process parameters are outside the space factor. Based on the results of studies, it is recommended to take the optimum process parameters of electrochemical chrome plating in the spilling solution as those that provide minimum wear of the coating: Yw=0.095 g: C=79.5; i=133.5 A/dm2; v=114.7 cm/s; T=59.3 оС, and the necessary surface roughness and taper of the part is advisable to obtain in further machining operations.

Author Biographies

Liubomyr Ropyak, Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska str., Ivano-Frankivsk, Ukraine, 76019

PhD, Senior Researcher, Associate Professor,

Department of Computer Engineering Manufacturing

Vasyl Ostapovych, Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska str., Ivano-Frankivsk, Ukraine, 76019

Engineer

Department of Computer Engineering Manufacturing

References

  1. Prysyazhnyuk, P., Lutsak, D., Vasylyk, A., Shihab, Thaer, Burda, M. (2015) Calculation of surface tension and its temperature dependence for liquid Cu-20Ni-20Mn alloy, Metallurgical and Mining Industry, 12, 346–350.
  2. Fernandes, F. A. P., Heck, S. C., Picon, C. A., Totten, G. E., Casteletti, L. C. (2012). Wear and corrosion resistance of pack chromised carbon steel. Surface Engineering, 28 (5), 313–317. doi: 10.1179/1743294411y.0000000079
  3. Zeng, Z., Zhang, J. (2008). Electrodeposition and tribological behavior of amorphous chromium-alumina composite coatings. Surface and Coatings Technology, 202 (12), 2725–2730. doi: 10.1016/j.surfcoat.2007.10.008
  4. Safonova, O. V., Vykhodtseva, L. N., Polyakov, N. A., Swarbrick, J. C., Sikora, M., Glatzel, P., Safonov, V. A. (2010). Chemical composition and structural transformations of amorphous chromium coatings electrodeposited from Cr(III) electrolytes. Electrochimica Acta, 56 (1), 145–153. doi: 10.1016/j.electacta.2010.08.108
  5. Protsenko, V. S., Danilov, F. I. (2014). Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: comparative study on advantages and disadvantages. Clean Technologies and Environmental Policy, 16 (6), 1201–1206. doi: 10.1007/s10098-014-0711-1
  6. Li, B. S., Lin, A. (2008). Study of Hard Chromium Plating from Trivalent Chromium Electrolyte. Key Engineering Materials, 373-374, 200–203. doi: 10.4028/www.scientific.net/kem.373-374.200
  7. Liang, A., Ni, L., Liu, Q., Zhang, J. (2013). Structure characterization and tribological properties of thick chromium coating electrodeposited from a Cr(III) electrolyte. Surface and Coatings Technology, 218, 23–29. doi: 10.1016/j.surfcoat.2012.12.021
  8. Addach, H., Berçot, P., Rezrazi, M., De Petris-Wery, M., Ayedi, H. F. (2007). Application of statistical design to optimisation of hardness and hydrogen content of chromium coating under pulse reverse electroplating. Transactions of the IMF, 85 (4), 187–193. doi: 10.1179/174591907x216422
  9. Jadid, A. P., Pourjafar, M., Banaei, A. (2014). Optimization of Electroplating Conditions of Chromium (VI) Using Taguchi Experimental Design Method. Anal. Bioanal. Chem., 6, 16–27.
  10. Korzynski, M., Pacana, A., Cwanek, J. (2009). Fatigue strength of chromium coated elements and possibility of its improvement with slide diamond burnishing. Surface and Coatings Technology, 203 (12), 1670–1676. doi: 10.1016/j.surfcoat.2008.12.022
  11. Silkin, S. A., Petrenko, V. I., Dikusar, A. I. (2010). Anodic dissolution of electrochemical chromium coatings in electrolytes for electrochemical machining: The dissolution rate and surface roughness. Surface Engineering and Applied Electrochemistry, 46 (1), 1–8. doi: 10.3103/s1068375510010011
  12. Sziráki, L., Kuzmann, E., Papp, K., Chisholm, C. U., El-Sharif, M. R., Havancsák, K. (2012). Electrochemical behaviour of amorphous electrodeposited chromium coatings. Materials Chemistry and Physics, 133 (2-3), 1092–1100. doi: 10.1016/j.matchemphys.2012.02.021
  13. Kadaiwala, B., Hall, T. D., Inman, M. Functional Trivalent Chromium Electroplating of Internal Diameters. Product Finishing. Available at: http://www.pfonline.com/articles/functional-trivalent-chromium-electroplating-of-internal-diameters
  14. Vihrov, N. M., Golicyn V. V. (2014) Vlijanie protochnogo jelektroliticheskogo hromirovanija na predel vynoslivosti stali. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova, 4 (4 (26)), 59–67.
  15. Ostapovich, V. V., Ropyak, L. Y., Velichkovich, A. S. (2013), Doslіdzhennja napruzheno-deformovanogo stanu vkritoi hromovim pokrivom dіljanki shtoka porshnevogo nasosa dvostoronn'oi dіi v umovah pozashtatnogo navantazhennja. Metodi ta priladi kontrolju jakostі, 2 (31), 118–125.
  16. Ostapovich, V. V. (2015). Vpliv tehnologіi zmіcnennja na pokazniki jakostі ta ekspluatacіjnі vlastivostі zmіnnih detalej porshnevih nasosіv dvostoronn'oi dіi. Naukovі notatki, 52, 126–134
  17. Gladkij, S. І., Palazhchenko, S. P. (2015). Rozroblennja obladnannja dlja doslіdzhennja vuzlіv tertja, sho pracjujut' pri zvorotno-postupal'nomu rusі Naukovij vіsnik ІFNTUNG, 2 (39), 89–100.
  18. Sidnyaev, N. I., Vilisova, N. T. (2011). Vvedenie v teoriju jeksperimenta. Bauman Moscow State Technical University, 463.

Published

2016-04-25

How to Cite

Ropyak, L., & Ostapovych, V. (2016). Optimization of process parameters of chrome plating for providing quality indicators of reciprocating pumps parts. Eastern-European Journal of Enterprise Technologies, 2(5(80), 50–62. https://doi.org/10.15587/1729-4061.2016.65719