Simulation of combined body tilt system of high-speed railway rolling stock

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.66782

Keywords:

combo drive, simulation model, body tilt, speed of movement, air springs, linear motor

Abstract

The actual problem of creating a high-speed railway rolling stock with a combined electromechanical and pneumatic body tilt system is considered. Using the proposed simulation model created in the MATLAB environment, simulation of the rolling stock body tilt while passing a curved track section is carried out. To determine the parameters of the elements of electromechanical and pneumatic drive units, information is necessary about the electrophysical processes, occurring in the tilt system and determining the input parameters for the design of the considered tilt system. The dynamic performance of components of the proposed mechanism is identified, which allows giving practical advice on the choice of parameters of semiconductor converter elements, pneumatic and electromechanical devices of the combined tilt system, and also determining the forces acting in the tilt mechanism elements. Based on these dependencies, it is possible to choose the element base of the semiconductor converter (types of keys and diodes), parameters and types of cylinders of air springs, as well as to determine the load of the elements of the overbogie structure of the rolling stock. The results can be used in the development and design of high-speed railway rolling stock without substantial reconstruction of the existing transport infrastructure.

Author Biographies

Bagish Yeritsyan, National Technical University «Kharkov Polytechnic Institute» 21 Bogoliya str., Kharkiv, Ukraine, 61002

Senior Lecturer

Department of electrical transport and diesel locomotive

Borys Liubarskyi, National Technical University «Kharkov Polytechnic Institute» 21 Bogoliya str., Kharkiv, Ukraine, 61002

Doctor of technical sciences, Professor

Department of electrical transport and diesel locomotive

Dmytro Iakunin, National Technical University «Kharkov Polytechnic Institute» 21 Bogoliya str., Kharkiv, Ukraine, 61002

PhD, Associate professor

Department of electrical transport and diesel locomotive

References

  1. Kornienko, V. V., Omel'yanenko, V. I. (2007). Vy'sokoskorostnoj e'lektricheskij transport. Mirovoj opy't. Khar'kov: Nacional'ny'j tekhnicheskij universitet «Khar'kovskij politekhnicheskij institut», 159.
  2. Yakunin, D. I. (2010). E'lektromekhanicheskaya sistema privoda s linejny'm dvigatelem dlya naklona kuzovov skorostnogo podvizhnogo sostava. Kharkiv: Nacional'ny'j tekhnicheskij universitet «Khar'kovskij politexnicheskij institut», 202.
  3. Lyubars'kyij, B. G. (2014). Teoretichnі osnovi dlya viboru ta ocіnki perspektivnikh sistem elektromekhanіchnogo peretvorennya energіi elektrorukhomogo skladu. Kharkiv: Nacіonal'nij texnіchnij unіversitet «Kharkіvs'kij polіtekhnіchnij іnstitut», 368.
  4. Razvitie tekhnologii naklona kuzovov vagonov (2001). Zhelezny'e dorogi mira, 11, 8–16.
  5. Garicoix, M. (2008). Talgo company in the domestic and foreign markets,La Viedu Rail, 3173, 20–25.
  6. Kottenhahn, V. (1998). Rolling stock to eliminate the gaps in the high-speed network—tilting trains in Germany. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 212 (1), 85–102. doi: 10.1243/0954409981530706
  7. Janicki, J. (2005). The development of high-speed transport. Deine Bahn, 9, 555–562.
  8. Oriol, M. (2008). Universal high-speed train for Spain's rail roads. European Railway Review, 3, 87–91.
  9. Michell, M., Martin, S. L. (2014). Building a railway for the 21st century: bringing high speed rail a step closer. Conference on Railway Excellence, Railway. Australia. Technical Society of Australasia, Proceedings, 612–621.
  10. McIntosh, J., Newman, P., Glazebrook, G. (2013). Why Fast Trains Work: An Assessment of a Fast Regional Rail System in Perth, Australia. JTTs, 03 (02), 37–47. doi: 10.4236/jtts.2013.32a005
  11. Smith, R. A., Zhou, J. (2014). Background of recent developments of passenger railways in China, the UK and other European countries. JZUS-A, 15, 925–935. doi: 10.1631/jzus.a1400295
  12. Luo, R, Zeng, J. (2009). Dynamic simulation of tilting train controlled by air springs. Engineering mechanics, 26 (3), 240–245.
  13. Hoyon, Ch., Gaiguant, J-C., Cros, M. (1999). Body-tilt system for articulated vehicles, a vehicle including such a system, and a set of such vehicles. U.S.Patent 5921185, 105/4.1; 105/199.1; 105/199.2. Alstom Transport SA (Paris, FR), 08/859,909, July 13.
  14. Weiss, T. (1998). ICN tilting trains will deliver faster and more frequent service. Railway Gazette International, Sutton, Surrey: Reed Business, 12 (154), 851–854.
  15. Weiss, T. (2003). Betriebserfahrungen mit den Intercity-Neigezügen ICN der Schweizerischen Bundesbahnen. ZEVrail Glasers Annalen, Berlin: Georg Siemens, 127 (9), 412–416.
  16. Machefert-Tassin, Y., Parel, C. (2001). Suisse, l'intercity Neigezug ou ICN: version helvète du train pendulaire. Chemins de fer, Paris Cedex 10: Association française des amis des chemins de fer, 6 (471), 29–37.
  17. Andersson, E., Bahr, H. V., Nilstam, N. G. (1995). Allowing higher speeds on existing tracks—design considerations of the X2000 train for Swedish State Railways. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 1989-1996 (vols 203-210), 209 (26), 93–104. doi: 10.1243/pime_proc_1995_209_261_02
  18. Sasaki, K. (2000). A Lateral Semi-Active Suspension of Tilting Train. Quarterly Report of RTRI, 41 (1), 11–15. doi: 10.2219/rtriqr.41.11
  19. Enomoto, M., Kamoshita, S., Kamiyama, M., Sasaki, K., Hamada, T., Kazato, A. (2005). Development of Tilt Control System Using Electro-Hydraulic Actuators. Quarterly Report of RTRI, 46 (4), 219–224. doi: 10.2219/rtriqr.46.219
  20. Andersson, E., Nilstam, N. (1984). The development of advanced high speed vehicles in Sweden. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering 1984-1988 (vols 198-202), 198 (15), 229–237. doi: 10.1243/pime_proc_1984_198_152_02
  21. Elia, A. (1998). Fiat Pendolino: developments, experiences and perspectives. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 212 (1), 7–17. doi: 10.1243/0954409981530643
  22. Erіcyan, B. Kh., Liubars'kij, B. G. Yakunіn, D. І. (2015). Matematichna model' pnevmatichnoi chastini kombіnovanogo pnevmatichnogo ta elektromexanіchnogo privodu naxilu kuzova transportnogo zasobu. Sistemi obrobki іnformacіi, 10, 200–204.
  23. Lyubars'kij, B. G., Erіcyan, B. Kh., Yakunіn, D. I. (2015). Matematichna model' elektromexanіchnoi chastini kombіnovanogo pnevmatichnogo ta elektromexanіchnogo privodu naxilu kuzova transportnogo zasobu. Sistemi obrobki іnformacіi, 11, 50–54.
  24. Erіcyan, B. Kh., Lyubars'kij, B. G., Yakunіn, D. І. (2015). Іmіtacіjna model' kombіnovanogo pnevmatichnogo ta elektromexanіchnogo privodu naxilu kuzova transportnogo zasobu. Zbіrnik naukovix prac' Kharkіvs'kogo unіversitetu Povіtryanix Sil, 4, 97–103.
  25. Erіcyan, B. Kh., Liubars'kij, B. G. Iakunіn, D. І. (2015). Іmіtacіjne modelyuvannya kombіnovanogo privodu naxilu kuzova shvidkіsnogo elektropoizdu. NTU «KhPI»: Mexanіka ta mashinobuduvannya, 1, 48–55.
  26. Liubars'kij, B. G., Erіcyan, B. Kh., Iakunіn, D. І. Glebova M. L. (2015). Optimіzacіya parametrіv lіnіjnogo dviguna naxilu kuzova transportnix zasobіv. Vistnyk NTU «KhPI», 41, 58–66.
  27. Lazarev, Yu. (2005). Modelirovanie processov i sistem v MATLAB. Uchebny'j kurs. Piter; Kiev: Izd. gruppa BHV, 512.
  28. . Chernykh, I. V. (2007). Modelirovanie e'lektrotekhnicheskikh ustrojstv v MATLAB, SimPowerSystems i Simulink, 288.
  29. Meeker, D. (2013). Finite Element Method Magnetics: Magnetics Tutorial. Available at: http://www.femm.info/wiki/MagneticsTutorial

Published

2016-04-27

How to Cite

Yeritsyan, B., Liubarskyi, B., & Iakunin, D. (2016). Simulation of combined body tilt system of high-speed railway rolling stock. Eastern-European Journal of Enterprise Technologies, 2(9(80), 4–17. https://doi.org/10.15587/1729-4061.2016.66782

Issue

Section

Information and controlling system