A study of fat interesterification parameters’ effect on the catalytic reaction activity of potassium glycerate

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.71236

Keywords:

interesterification, catalyst, palm olein, melting point, differential scanning calorimetry, mathematical planning

Abstract

The study has disclosed the peculiarities of the interesterification process in the presence of potassium glycerate as the catalyst. The properties of palm olein as a result of interesterification have been found to depend on such parameters as temperature, duration, and catalyst concentration. The study makes use of a central composite design (CCD) of the second order orthogonal plan. The melting temperature of palm olein is accepted as a response function. The initial palm olein and the samples obtained according to the plan of the experiment were researched by differential scanning calorimetry to determine the characteristics of the phase transitions – melting and crystallization. The biggest difference was observed between the melting temperatures in a capillary and the temperature peaks on the curves of DSC thermograms for highly­fusible samples; the peak temperature in the DSC thermogram exceeds in these cases the temperature determined in the capillary.

The study has revealed that the maximum melting temperature of palm olein occurs during the interesterification process at a temperature of 100 °C, with the process duration of 1.5 hours, and with the catalyst concentration of 0.5 %. The temperature difference between the initial melting and the interesterified palm olein was observed as exceeding 12 °C when the catalyst concentration, most often used in interesterification, was 0.1 %, at a temperature of 100 °C, and with the process duration of 1.5 hours.

Author Biographies

Natalia Sytnik, Ukrainian Research Institute of Oils and Fats National Academy of Agrarian Sciences of Ukraine Dziuba ave., 2a, Kharkiv, Ukraine, 61019

Research Assistant

Laboratory of studies of fats chemistry of oils and fats production

Igor Demidov, Ukrainian Research Institute of Oils and Fats National Academy of Agrarian Sciences of Ukraine Dziuba ave., 2a, Kharkiv, Ukraine, 61019

Doctor of technical sciences, Professor, head of the laboratory

Laboratory of studies of fats chemistry of oils and fats production

Ekaterina Kunitsa, National Technical University “Kharkiv Polytechnic Institute” Bagaliya str. 21, Kharkiv, Ukraine, 61002

PhD, Scientific Worker

Department of Technology of fats and fermentation products

Viktoria Mazaeva, Ukrainian Research Institute of Oils and Fats National Academy of Agrarian Sciences of Ukraine Dziuba ave., 2a, Kharkiv, Ukraine, 61019

Research Assistant

Laboratory of studies of fats chemistry of oils and fats production

Olga Chumak, National Technical University “Kharkiv Polytechnic Institute” Bagaliya str. 21, Kharkiv, Ukraine, 61002

PhD, Professor

Department of Technology of fats and fermentation products

References

  1. Voskonyan, O. S. (2012). Osnovnyie napravleniya i etapy sozdaniya emulsionnyh zhirovyh produktov. Maslozhyrovaya promyshlennost, 6, 16–17.
  2. Baykov, V. G. (2007). Klassifikatsiya prirodnyh zhirov i ih himicheskiy sostav. Maslozhyrovaya promyshlennost, 3, 44–45.
  3. Paska, M. Z., Demydov, I. M., Zhuk, O. I. (2013). Tekhnologiya margaryniv ta promyslovykh zhyriv. Lviv: SPOLOM, 187.
  4. Noor Lida Habi Mat Dian, Kalyana Sundram Asman Ismail (2006). Interesterified palm products as hard stock for solid fat formulations. MPOB Informatiom series, 323, 330–331.
  5. Waheed, A., Rasool, G., Asghar, A. (2010). Effect of interesterified palm and cottonseed oil blends on cookie quality. Agriculture and Biology Journal of North America, 1 (3), 402–406. doi: 10.5251/abjna.2010.1.3.402.406
  6. Demydov, I. M., Sytnik, N. S., Gusak, V. A. (2015). Perspektyvni napryamky udoskonalennya pereeeteryfikatsiyi oliy ta zhyriv. Naukovo-praktychnyy zhurnal „Integrovani tekhnolohiyi ta energozberezhennya, 2, 90–95.
  7. Kwok, Q., Acheson, B., Turcotte, R., Janès, A., Marlair, G. (2013). Fire and explosion hazards related to the industrial use of potassium and sodium methoxides. Journal of Hazardous Materials, 250-251, 484–490. doi: 10.1016/j.jhazmat.2013.01.075
  8. Joseph, G. (2007). Combustible dusts: A serious industrial hazard. Journal of Hazardous Materials, 142 (3), 589–591. doi: 10.1016/j.jhazmat.2006.06.127
  9. Nor Aini Idris, Noor Lida Habi Mat Dian (2005). Interesterified palm products as alternatives to hydrogenation. Asia Pac. J. Clin. Nutr., 14 (4), 396–401.
  10. López, D. E., Goodwin, J. G., Bruce, D. A., Furuta, S. (2008). Esterification and transesterification using modified-zirconia catalysts. Applied Catalysis A: General, 339 (1), 76–83. doi: 10.1016/j.apcata.2008.01.009
  11. Bradley, D., Levin, E., Rodriguez, C., Williard, P. G., Stanton, A., Socha, A. M. (2016). Equilibrium studies of canola oil transesterification using a sodium glyceroxide catalyst prepared from a biodiesel waste stream. Fuel Processing Technology, 146, 70–75. doi: 10.1016/j.fuproc.2016.02.009
  12. Pisarello, M. L., Querini, C. A. (2013). Catalyst consumption during one and two steps transesterification of crude soybean oils. Chemical Engineering Journal, 234, 276–283. doi: 10.1016/j.cej.2013.08.109
  13. KoohiKamali, S., Tan, C. P., Ling, T. C. (2012). Optimization of Sunflower Oil Transesterification Process Using Sodium Methoxide. The Scientific World Journal, 2012, 1–8. doi: 10.1100/2012/475027
  14. Martin, R., Ramaswami, S., Ajay, D., Phyllis, S., Yoong, G. H. (2011). Development of sodium alkoxide catalysts from polyols. Saskatchewan. Available at: http://ecommons.usask.ca/bitstream/handle/10388/ETD-2011-07-75/GOK-THESIS.pdf?sequence=3
  15. Golodnjak, V. A., Demidov, I. N., Mazaeva, V. S., Sytnik, N. S., Petik, P. F. (2014). Opredelenie aktivnosti katalizatora himicheskoj pereeterifikacii zhirov. Uralskij nauchnyj vestnik, 8 (87), 187–193.
  16. Bondar, A. G., Statjuha, G. A., Potjazhenko, I. A. (1980). Planirovanie eksperimenta pri optimizacii processov himicheskoj tehnologii. Kyiv: Vishha shkola, 264.
  17. Emelina, A. L. (2009). Differentsialnaya skaniruyuschaya kalorimetriya. Moscow: Laboratoriya himicheskogo fakulteta MGU, 42.
  18. Knothe, G., Dunn, R. O. (2009). A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. Journal of the American Oil Chemists' Society, 86 (9), 843–856. doi: 10.1007/s11746-009-1423-2
  19. Sytnik, N. S., Demydov, I. M., Kunitsa, K. V. (2016). DoslIdzhennya aktivnostI glitseratu kaliyu yak katalizatoru pereeterifikatsiyi zhiriv za riznih umov provedennya protsesu. Visnik Natsionalnogo tehnichnogo universitetu «KhPI», 12 (1184), 188–193.

Downloads

Published

2016-06-26

How to Cite

Sytnik, N., Demidov, I., Kunitsa, E., Mazaeva, V., & Chumak, O. (2016). A study of fat interesterification parameters’ effect on the catalytic reaction activity of potassium glycerate. Eastern-European Journal of Enterprise Technologies, 3(6(81), 33–38. https://doi.org/10.15587/1729-4061.2016.71236

Issue

Section

Technology organic and inorganic substances