A study of uncertainty of expert measurement results in the quality management system
DOI:
https://doi.org/10.15587/1729-4061.2016.71607Keywords:
uncertainty estimation, expert measurement results, expert quality, standardization recommendationsAbstract
Since the quality of measuring in international practice is assessed by uncertainty of the results, and an apparatus for its calculation in the area of expert measurement has not been developed yet, the study focuses on the methods of estimating uncertainty of expert measurement results.
The authors have conducted analytical research on the sources of expert measurement results’ uncertainty, among which the main ones herewith singled out are: imperfection of experts, wrong choice of their number, and assessment conditions. The system of expert quality indices and the methods of their identification are suggested in the article. It enables making the right choice of the optimum methods of estimating the expert quality indices in any concrete case. The expert assessment of the significance of student activity components with regard to their uncertainty calculation has proved that the most important component is a “study activity”, and the least important one is a “social activity”.
The suggested recommendations for standardizing the specialist experts’ quality indices suggest setting the lower limits of the admissible values. It allows normalizing their characteristics and optimizing the process of their attestation and hereby ensures coherence in expert measurements.
References
- Guide to the Expression of Uncertainty in Measurement (1995). ISO, Switzerland, 1–101.
- Kowalczyk, A., Szlachta, A., Hanus, R. (2012). Standard uncertainty determination of the mean for correlated data using conditional averaging metrology and measurement systems. Metrology and Measurement System, 19 (4), 787–796.
- Gutiérrez, R., Ramírez, M., Olmeda, E., Díaz, V. (2015). An Uncertainty Model Of Approximating The Analytical Solution To The Real Case In The Field Of Stress Prediction. Metrology and Measurement Systems, 22 (3), 429–442. doi: 10.1515/mms-2015-0031
- Kondruk, N. (2014). Development of system for processing of fuzzy expert information. Managing the Development of Complex Systems, 18, 173–176.
- Danylkovych, A., Hlebnikova, N., Omeljchenko, N. (2014). Selecting the nomenclature of quality indicators of hybrophobized fur velour by expert method. Eastern-European Journal of Enterprise Technologies, 5 (3 (71)), 34–39. doi: 10.15587/1729-4061.2014.27613
- Parratt, J. A., Fahy, K. M., Hutchinson, M., Lohmann, G., Hastie, C. R., Chaseling, M., O’Brien, K. (2016). Expert validation of a teamwork assessment rubric: A modified Delphi study. Nurse Education Today, 36, 77–85. doi: 10.1016/j.nedt.2015.07.023
- Snytyuk, V., Gnatienko, G. (2008). Optimization of the evaluation process under uncertainty based on structuring the domain and axioms unbiasedness. Artificial Intelligence, 3, 217–223.
- DeCarlo, P. J., Rizk, N. (2010). The Design and Development of an Expert System Prototype for Enhancing Exam Quality. International Journal of Advanced Corporate Learning (iJAC), 3 (3), 10–13. doi: 10.3991/ijac.v3i3.1356
- Hunkalo, А., Shpak, O. (2014). Improvement of the products quality level by competent experts. Technology audit and production reserves, 4 (1 (18)), 36–38. doi: 10.15587/2312-8372.2014.26368
- Baytsar, R., Skolozdra, M., Garasym, O. (2008). Certification of professional competence of personnel. Measuring equipment and metrology, 69, 108–113.
- Chin, K.-S., Wang, Y.-M., Yang, J.-B., Gary Poon, K. K. (2009). An evidential reasoning based approach for quality function deployment under uncertainty. Expert Systems with Applications, 36 (3), 5684–5694. doi: 10.1016/j.eswa.2008.06.104
- Lin, V. S., Goodwin, P., Song, H. (2014). Accuracy and bias of experts’ adusted forecasts. Annals of Tourism Research, 48, 156–174. doi: 10.1016/j.annals.2014.06.005
- Hong, D. H., Lee, S., Do, H. Y. (2001). Fuzzy linear regression analysis for fuzzy input–output data using shape-preserving operations. Fuzzy Sets and Systems, 122 (3), 513–526. doi: 10.1016/s0165-0114(00)00003-8
- Yang, M.-S., Lin, T.-S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Sets and Systems, 126 (3), 389–399. doi: 10.1016/s0165-0114(01)00066-5
- Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40
- İçen, D., Demirhan, H. (2016). Error measures for fuzzy linear regression: Monte Carlo simulation approach. Applied Soft Computing, 46, 104–114. doi: 10.1016/j.asoc.2016.04.013
- Livotov, P. (2016). Estimation of new-product success by company’s internal experts in the early phases of innovation process. Procedia CIRP, 39, 150–155. doi: 10.1016/j.procir.2016.01.181
- Kuo, T.-C., Wu, H.-H., Shieh, J.-I. (2009). Integration of environmental considerations in quality function deployment by using fuzzy logic. Expert Systems with Applications, 36 (3), 7148–7156. doi: 10.1016/j.eswa.2008.08.029
- Carnevalli, J. A., Miguel, P. C. (2008). Review, analysis and classification of the literature on QFD–Types of research, difficulties and benefits. International Journal of Production Economics, 114 (2), 737–754. doi: 10.1016/j.ijpe.2008.03.006
- Chan, L.-K., Wu, M.-L. (2002). Quality function deployment: A literature review. European Journal of Operational Research, 143 (3), 463–497. doi: 10.1016/s0377-2217(02)00178-9
- Bekhtieriev, V., Lange, M. (1998). Influence of Staff on Personality. Pedology and Upbringing. Moscow: Enlightenment Worker, 44–97.
- Novitsky, P., Zograf, I. (1991). Estimation of measurement results’ errors. Leningrad: EnergoAtomIzdat, 10–251.
- Venttsel, E. (1969). Probability theory. Moscow: Gosudarstvennoe izdatel'stvo fiziko-matematicheskoy literatury, 28–204.
- Obozovski, S. (1993). Information measurement technics: methodology questions of measurement theory, study handbook. Kyiv: ISDO, 56–89.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Tetiana Bubela, Mykola Mykyychuk, Alla Hunkalo, Oksana Boyko, Olena Basalkevych
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.