Methods of overvoltage limitation in modern dc semiconductor switching apparatus and their calculation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.72533

Keywords:

switching surge, voltage regulator, varistor, semiconductor apparatus, semiconductor device

Abstract

The study considers switching surges at semiconductor switches of semiconductor devices of the direct current at the time of switching electric circuits; such surges occur due to the energy accumulated in the inductive elements of the mains at the load disconnection.

As the cost of power semiconductor devices is determined not only by the voltage that they are able to handle but also by the class of the device that determines the amount of the blocked voltage, an important task is to use special measures to reduce these surges down to levels that are close to the network parameters.

The aim of this study was to develop a methodology for calculating the parameters of a regulator of switching surges on the basis of a series of parallel-connected energy-intensive varistors used in semiconductor devices of the direct current.

On the basis of studying the transient processes that occur in such surge restrictors of voltage in semiconductor devices of the direct current at load switching, analytical expressions have been developed for calculating the basic parameters of the voltage regulator.

As a result, an engineering method has been devised for calculating the parameters of varistor surge regulators in hybrid and contactless semiconductor devices of the direct current at a given level of surge admissible for this class of devices. The research findings facilitate high accuracy at a small amount of time in choosing fully controlled semiconductor devices with regard to the current and voltage when designing modern switching semiconductor apparatus that work with the direct current; this helps solve the basic tasks of planning.

The suggested voltage regulator for semiconductor switching apparatus of the direct current effectively limits switching surges in the circuits of power semiconductor devices to below 2.5 Unom. It significantly surpasses such parameters as the dimensions, weight and cost of resistive-capacitive surge limiters previously used in semiconductor contactors. Moreover, it can reduce the class level of fully controlled power semiconductor devices that are used in semiconductor switches of such apparatus.

Author Biographies

Anatoly Soskov, O. M. Beketov National University of Urban Economy in Kharkiv Revolutsiy str., 12, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Theoretical and General Electrical Engineering

Natalia Sabalaeva, O. M. Beketov National University of Urban Economy in Kharkiv Revolutsiy str., 12, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Theoretical and General Electrical Engineering

Marina Glebova, O. M. Beketov National University of Urban Economy in Kharkiv Revolutsiy str., 12, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Theoretical and General Electrical Engineering

Yana Forkun, O. M. Beketov National University of Urban Economy in Kharkiv Revolutsiy str., 12, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Theoretical and General Electrical Engineering

References

  1. Rozanov, Yu. K., Ryabchitskiy, M. V., Kvasnyuk, A. A. (2007). Silovaya elektronika. Moscow: Izdatelskiy dom MEI, 632.
  2. Holroyd, F. W., Temple, V. A. K. (1982). Power Semiconductor Devices for Hybrid Breakers. IEEE Transactions on Power Apparatus and Systems, PAS-101(7), 2103–2108. doi: 10.1109/tpas.1982.317427
  3. Soskov, A. G. (2011). Usovershenstvovannyie silovyie kommutatsionnyie poluprovodnikovyie apparatyi nizkogo napryazheniya. Kharkiv National Academy of Municipal Economy, 156.
  4. Soskov, A. G., Sabalaeva, N. O. (2012). Gibridni kontaktori nizkoyi naprugi z pokraschenimi tehniko-ekonomichnimi harakteristikami. Kharkiv National Academy of Municipal Economy, 268.
  5. Storasta, L., Haefner, M. J., Dugal, F., Tsyplakov, E., Callavik, M. (2015). Optimized Power Semiconductors for the Power Electronics Based HVDCBreaker Application. PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 1–7.
  6. Tanaka, Y., Takatsuka, A., Yatsuo, T., Sato, Y., Ohashi, H. (2013). Development of semiconductor switches (SiC-BGSIT) applied for DC circuit breakers. 2013 2nd International Conference on Electric Power Equipment – Switching Technology (ICEPE-ST). doi: 10.1109/icepe-st.2013.6804323
  7. Yang, B., Gao, Y., Wei, X., He, Z., Chen, L., Shan, Y. (2015). A hybrid circuit breaker for DC-application. 2015 IEEE First International Conference on DC Microgrids (ICDCM), 187–192. doi: 10.1109/icdcm.2015.7152036
  8. Huang, A., Chang, P., Xiaoqing, S. (2015). Design and development of a 7.2 kV/200A hybrid circuit breaker based on 15 kV SiC emitter turn-off (ETO) thyristor. 2015 IEEE Electric Ship Technologies Symposium (ESTS), 306–311. doi: 10.1109/ests.2015.7157909
  9. Soskov, A. G., Soskova, I. A. (2005). Poluprovodnikovyie apparatyi: kommutatsiya, upravlenie, zaschita. Kyiv: Karavella, 344.
  10. Soskova, I. A., Alaev, P. N. (2001). Raschyot perenapryazheniy v poluprovodnikovyih klyuchah elektronnyih apparatov postoyannogo toka s uchyotom predvklyucheniy induktivnosti seti. Visnik of National Technical University "Kharkiv Polytechnic Institute", 14, 323–329.
  11. Magnusson, J., Bissal, A., Engdahl, G., Saers, R., Zichi, Z., Liljestrand, L. (2013). On the use of metal oxide varistors as a snubber circuit in solid-statebreakers. IEEE PES ISGT Europe 2013, 1–4. doi: 10.1109/isgteurope.2013.6695454
  12. Hassanpoor, A., Hafner, J., Jacobson, B. (2014). Technical assessment of load commutation switch in hybrid HVDC breaker. 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 3667–3673. doi: 10.1109/ipec.2014.6870025
  13. Burman, A. P. et. al.; Rozanov, Yu. K. (Ed.) (2010). Elektricheskie i elektronnyie apparatyi. In 2 volumes. Vol. 2. Silovyie elektronnyie apparatyi. Moscow: uzd. tsentr. «Akademiya», 320.
  14. Hassanpoor, A., Hafner, J., Jacobson, B. (2015). Technical Assessment of Load Commutation Switch in Hybrid HVDC Breaker. IEEE Trans. Power Electron., 30 (10), 5393–5400. doi: 10.1109/tpel.2014.2372815
  15. Soskov, A. G., Alaev, P. N., Soskova, I. A. (2004). Sverhbyistrodeystvuyuschie beskontaktnyie vyiklyuchateli na polnostyu upravlyaemyih silovyih poluprovodnikovyih priborah. ElektrotehnIka I ElektromehanIka, 2, 46–50.
  16. Soskov, A. G., Sabalaeva, N. O., Soskova, I. A. (2009). Issledovanie kommutatsionnyih perenapryazheniy pri kommutirovanii tsepey peremennogo toka gibridnyimi kontaktorami. Noveyshie tehnologii v elektroenergetike», 28.
  17. Klimenko, B. V. (2012). Elektrichni aparati. elektromehanichna aparatura komutatsiyi, keruvannya ta zahistu. zagalniy kurs. Kharkiv: Tochka, 340.
  18. Zeveke, G. V., Ionkin, P. A., Netushil, A. V., Strahov, S. V. (1989). Osnovyi teorii tsepey. 5th edition. Moscow: Energoatomizdat, 528.
  19. Soskov, A. G., Glebova, M. L., Sabalaeva, N. O., Forkun, Ya. B. (2014). Calculation of the thermal mode in semiconductor devices in conditions of their operation in semiconductor apparatuses. Eastern-European Journal of Enterprise Technologies, 5/8 (71), 58–66. doi: 10.15587/1729-4061.2014.27983

Downloads

Published

2016-06-29

How to Cite

Soskov, A., Sabalaeva, N., Glebova, M., & Forkun, Y. (2016). Methods of overvoltage limitation in modern dc semiconductor switching apparatus and their calculation. Eastern-European Journal of Enterprise Technologies, 3(8(81), 4–9. https://doi.org/10.15587/1729-4061.2016.72533

Issue

Section

Energy-saving technologies and equipment