Realization of the paradigm of prescribed control of a nonlinear object as the problem on maximization of adequacy

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.75674

Keywords:

prescribed control, maximization of adequacy, additional equations in the problem of optimal control

Abstract

Here we propose a new realization of the paradigm of prescribed control on the example of a vector model in the form of nonlinear non-stationary system of differential equations of the first order, for which a control system is synthesized. The estimation of efficiency is introduced as a continuous, three times differentiated, dimensionless function. Dimensionless objective function and the function of Lagrange with the inequalities constraints is formed. The problem of minimization of square deviation is posed for them as the problem of maximization of one of the criteria of adequacy – accuracy. It is written in a formalized way in the form of a system of nonlinear algebraic equations. For construction of its solution, a recurrent approximation of objective function is used, which made it possible to complement the system with new equations and to find, in a general form, expressions of auxiliary vectors independent on the number of components of the vectors of strategies and the Lagrange multipliers. Two additional equations are brought out, which realize maximization of adequacy by two additional criteria: depth and completeness. All this taken together made it possible to complement the system with new nonlinear equations, which, in turn, increased substantially the number of permissible inequalities constraints. This approach considers the properties of a non-stationary nonlinear model, which describes the object independent of the selection of the purpose of control. As a result of the solution of the problem, it was possible to connect the idea about the adequate, prescribed behavior of model and the properties of a nonlinear object, to obtain a differential equation that describes optimal controlling action, which, in this case, maximizes adequacy.

It was demonstrated that in a particular case, under condition of independence of the rate of change in controlling influence on its magnitude, the obtained results coincide with expressions of the method of speed gradient. The estimations of the norm of error in the vector of strategies are presented depending on the properties of object, error in the function of efficiency and synthesized law of controlling action for the prescribed law of the object’s functioning.

The set and solved problem demonstrated possibilities to set, with the aid of cybernetic methods, a new type of problems on adequate control. The latter is especially relevant in connection with application of integrated computer technologies. The obtained solutions without artificial assumptions make it possible to synthesize controlling action for the conditions that change over time both in the properties of object and in constraints.

Author Biography

Alexander Trunov, Petro Mohyla Black Sea State University 68 Marines str., 10, Mykolaiv, Ukraine, 54000

Ph.D., Associate Professor, Vice-Chancellor

Department of automation and computer-integrated technologies

References

  1. Blekhman, Y. Y., Fradkov, A. L. (2001). Upravlenye mekhatronnуmy vybratsyonnуmy ustanovkamy. Sankt-Peterburg: Nauka, 85.
  2. Bryllyuеn, L. (1960). Nauka y teoryya ynformatsyy. Moscow: Fyzmathyz, 392.
  3. Butkovskyy, A. H., Samoylenko, Yu. Y. (1984). Upravlenye kvantovo-mekhanycheskymy protsessamy. Moscow: Nauka, 256.
  4. Bak, P. E., Yoshino, R. (2000). A Dynamical Model of Maxwell's Demon and Confinement Systems. Contributions to Plasma Physics, 40 (3-4), 227–232. doi: 10.1002/1521-3986(200006)40:3/4<227::aid-ctpp227>3.0.co;2-y
  5. Blekhman, I. I. (Ed.) (2004). Selected Topics in Vibrational Mechanics. Series on Stability, Vibration and Control of Systems, Series A. Singapore: World Scientific, 440. doi: 10.1142/9789812794529
  6. Brockett, R. W.; Martin, C., Hermann, R. (Eds.) (1977). Control theory and analytical mechanics In Geometric Control Theory. Vol. VII. Lie Groups. Brookline, MA: Mat. Sci. Press, 1–48.
  7. Valyev, K. A., Kokyn, A. (2000). Kvantovуy komp'yuter: mechta yly real'nost'? Yzhevsk: RKhD, 352.
  8. Gabor, D. (1953). Communication theory and physics. Transactions of the IRE Professional Group on Information Theory, 1 (1), 48–59. doi: 10.1109/tit.1953.1188558
  9. Gubarenko, G. V., Ovezgel'diev, A. O., Petrov, E. G. (2013). Modeli i metody upravlenija ustojchivym razvitiem social'no-jekonomicheskih sistem. Kherson: Iz-vo Grin', 252.
  10. Karu, T. (2003). Low-Power Laser Therapy. Chep. 48. Biomedical Photonics Handbook. CRC Press, 1787. doi: 10.1201/9780203008997.ch48
  11. Karu, T. I. (2008). Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochemistry and Photobiology, 84 (5), 1091–1099. doi: 10.1111/j.1751-1097.2008.00394.x
  12. Kadomtsev, B. B. (1994). Dynamics and information. Physics-Uspekhi, 37 (5), 425–499. doi: 10.1070/pu1994v037n05abeh000109
  13. Kadomtsev, B. B. (1999). Dynamyka y ynformatsyya. Moscow: Red. zhurn. "Uspekhy fyzycheskykh nauk", 400.
  14. Kilin, S. Y. (1999). Quantum information. Physics-Uspekh, 42 (5), 435–452. doi: 10.1070/pu1999v042n05abeh000542
  15. Kozeev, V. A. (1985). Povуshenye bezotkaznosty y tochnosty nelyneynуkh system upravlenyya. Leningrad: Еnerhoatomyzdat, 127.
  16. Kondratenko, Y. P., Sidenko, Ie. V. (2012). Correction of the Knowledge Database of Fuzzy Decision Support System with Variable Structure of the Input Data. Minsk: Publ. Center of BSU, 56–61.
  17. Kondratenko, Y. P., Korobko, V. V., Korobko, O. V. (2013). Distributed computer system for monitoring and control of thermoacoustic processes. IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 249–253. doi: 10.1109/idaacs.2013.6662682
  18. Kondratenko, Y., Klymenko, L., Kondratenko, V., Kondratenko, G., Shvets, E. (2013). Slip Displacement Sensors for Intelligent Robots: Solutions and Models. 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 861–866. doi: 10.1109/idaacs.2013.6663050
  19. Kryuchkovskiy, V. V., Petrov, E. G., Brynza, N. A. (2010). Informativnaya predpochtitelnost statisticheskoy formy predstavleniya iskhodnykh dannykh v usloviyakh intervalnoy neopredelennosti. Computer science. Telecommunications and control systems, 4 (103), 11–18.
  20. Кhodakov, V. E., Vezumskiy, A. K. (2013). Kharakternye osobennosti odnogo klassa sotsial'no-ekonomicheskikh system. Problemi Іnformatsіynikh, 2 (014), 10–14.
  21. Landauer, R. (1996). Minimal Energy Requirements in Communication. Science, 272 (5270), 1914–1918. doi: 10.1126/science.272.5270.1914
  22. H. S. Leff, A. F. Rex (Eds.) (1990). Maxwell's Demon: Entropy, Information, Computing. New York: Random House.
  23. Neymark, Yu. Y., Landa, P. S. (1987). Stokhastycheskye y khaotycheskye kolebanyya. Moscow: Nauka, 424.
  24. Ott, E., Grebogi, C., Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64 (11), 1196–1199. doi: 10.1103/physrevlett.64.1196
  25. Poplavskyy, R. P. (1981). Termodynamyka ynformatsyonnуkh protsessov. Moscow: Nauka, 255.
  26. Реiеrls, R. (1983). Postroenie fizicheskikh modeley. Uspekhi fizicheskikh nauk, 140 (6), 315. doi: 10.3367/ufnr.0140.198306d.0315
  27. Petrov, E. G. Brynza, N. A. (2013). Sintez modeli prinyatiya investitsionnykh resheniy v usloviyakh mnogokriterial'nosti. Problemi Іnformatsіynikh tekhnologіy, 14, 6–25.
  28. Stratonovych, R. L. (1975). Teoryya ynformatsyy. Moscow: Sov. radyo, 424.
  29. Stratonovych, R. L., Polyakova, M. S. (1981). Еlementу molekulyarnoy fyzyky, termodynamyky y statystycheskoy fyzyky. Moscow: Yzd-vo MHU, 176.
  30. Solodovnikov, V. V. (1951). Sintez korrektiruyushchikh ustroystv sledyashchikh sistem pri tipovykh vozdeystviyakh. Avtomatika i telemekhanika, 5, 352–388.
  31. Szilard, L. (1929). Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wessen. Zeitschrift for Physik, 53 (11-12), 840–856. doi: 10.1007/bf01341281
  32. Trunov, A. N. (2011). Recurrence approximation in problems of modeling and design. Monografy, Mykolayiv:Petro Mohyla BSSU, 272.
  33. Trunov, A. N. (2013). Intellectualization of the models’ transformation process to the recurrent sequence. European Applied Sciences, Ort Publishing, 9 (1), 123–130.
  34. Trunov, A. N. (2016). Peculiarities of the interaction of electromagnetic waves with bio tissue and tool for early diagnosis, prevention and treatment. 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO), 169–174. doi: 10.1109/elnano.2016.7493041
  35. Trunov, A. N. (2014). Application of the recurrent approximation method to synthesis of neuron net for determination the hydrodynamic characteristics of underwater vehicles. Problem of Information Technology, Journal, 02 (016), 39–47.
  36. Trunov, A. N. (2014). The formation of unified method of technological process effectiveness evolution. Problemi іnformatsіynikh tekhnologіy, 14, 104–108.
  37. Trunov, O. M. (2015). An adequacy criterion in evaluating the effectiveness of a model design process. Eastern-European Journal of Enterprise Technologies, 1 (4 (73)), 36–41. doi: 10.15587/1729-4061.2015.37204
  38. Trunov, A. N. (2015). Maximization of adequacy as the tool of formulation and improving of model. Problem of Information Technology, Jornal, 01 (017), 70–76.
  39. Trunov, A. N. (2015). Modernization of means for analysis and solution of nonlinear programming problems. Metody Ilościowe w Badaniach Ekonomicznych, 16 (2), 133–141.
  40. Turchyn, V. F. (2000). Fenomen nauky: Kybernetycheskyy podkhod k еvolyutsyy. Мoscow: ЕTS, 368.
  41. Fradkov, A. L., Yakubovskyy, O. A. (Eds.) (2003). Upravlenye molekulyarnуmy y kvantovуmy systemamy. Мoscow – Yzhevsk: Ynstytut komp'yuternуkh yssledovanyy, 416.
  42. Fradkov, A. L. (2003). Kybernetycheskaya fyzyka. Sankt-Peterburg: Nauka, 208.
  43. Fradkov, A. L. (2005). O primenenii kiberneticheskikh metodov v fizike. Uspekhi Fizicheskih Nauk, 175 (2), 113–138. doi: 10.3367/ufnr.0175.200502a.0113
  44. Fradkov, A. L., Pogromsky, A. Yu. (1998). Introduction to Control of Oscillations and Chaos. World Scientific Series on Nonlinear Science Series A. doi: 10.1142/9789812798619
  45. Fradkov, A. (1999). Exploring nonlinearity by feedback. Physica D: Nonlinear Phenomena, 128 (2-4), 159–168. doi: 10.1016/s0167-2789(98)00322-4
  46. Kholevo, A. S. (2002). Vvedenye v kvantovuyu teoryyu ynformatsyy. Moscow: Yzd-vo MTsNMO, 128.
  47. Zaychenko, J. P. (2000). Operational Research. Kyiv, 688.
  48. Naeser, M. A., Hamblin, M. R. (2015). Traumatic Brain Injury: A Major Medical Problem That Could Be Treated Using Transcranial, Red/Near-Infrared LED Photobiomodulation. Photomedicine and Laser Surgery, 33 (9), 443–446. doi: 10.1089/pho.2015.3986
  49. Selivanov, A., Fradkov, A., Fridman, E. (2015). Passification-based decentralized adaptive synchronization of dynamical networks with time-varying delays. Journal of the Franklin Institute, 352 (1), 52–72. doi: 10.1016/j.jfranklin.2014.10.007
  50. Fradkov, A. L. (2011). International conferences in control systems: Traditions and trends. Automation and Remote Control, 72 (1), 160–163. doi: 10.1134/s0005117911010139
  51. Dzhunusov, I. A., Fradkov, A. L. (2011). Synchronization in networks of linear agents with output feedbacks. Automation and Remote Control, 72 (8), 1615–1626. doi: 10.1134/s0005117911080029

Downloads

Published

2016-08-30

How to Cite

Trunov, A. (2016). Realization of the paradigm of prescribed control of a nonlinear object as the problem on maximization of adequacy. Eastern-European Journal of Enterprise Technologies, 4(4(82), 50–58. https://doi.org/10.15587/1729-4061.2016.75674

Issue

Section

Mathematics and Cybernetics - applied aspects