Determining parameters of electric drive of a sleeper-type turnout based on electromagnet and linear inductor electric motor

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.75860

Keywords:

turnout, electric drive, linear induction motor, electromagnet, methods of optimization

Abstract

As a result of the conducted study, we determined parameters of the electric drive of a sleeper-type turnout based on the linear electromagnetic energy converters. By parameters of the electric drive we mean not only the design of a linear electric motor, such as diameters of stator, anchor, their length, the magnitude of air gap, the type of coil, but also availability of additional elements. In this case — availability of the springs that ensure the required force at the motion start. In this case, two variants of the linear motors design were considered and various layouts of electric drive of a turnout, respectively. In both cases, the force from the motor is transmitted directly to the coupling rod between the rail points, which makes it possible to exclude such an additional element as the reducer, which has a relatively low performance efficiency, additional metal consumption and overall size, which also decreases general reliability of the device as a whole. The problem of multicriterion optimization of parameters of electric motors was compiled. Geometric dimensions of the drives were accepted as the variable parameters. The analysis revealed that the best result in the search for global optimum out of 11 variants were demonstrated by the Weyl method (with the mean-square deviation of 680.9N for electromagnet) and the method of cyclic minimum (with the mean-square deviation of 1052.3N for induction motor). The estimation was performed according to results of the optimal (minimal) value of the mean-square deviation of electromagnetic force from the resistance force. As the load we used the 1/22 type of a turnout with the maximum weight of rail points for the Р65 rail. The data of the study are necessary for creating a new class of electric drives of the turnouts, which make it possible to increase the performance efficiency of the device, as well as its performance speed and, in doing so, to contribute to fulfillment of the program of implementation of high-speed traffic in Ukraine. As a result of the studies, it was found that it is expedient to use the proposed systems of electromagnetic energy converters as the new type of source of mechanical energy in the turnout.

Author Biographies

Serhii Buriakovskyi, Ukrainian state university of railway transport Feuerbach sq., 7, Kharkiv, Ukraine, 61050

PhD, Professor

Department of energy savings, electrical engineering and electromechanics

Artem Maslii, Ukrainian state university of railway transport Feuerbach sq., 7, Kharkiv, Ukraine, 61050

PhD, Senior Lecturer

Department of energy savings, electrical engineering and electromechanics

Andrii Maslii, LTD «Ukrtranssignal» Lui Pastera str., 2, Kharkiv, Ukraine, 61075

Engineer

References

  1. Maslyi, Ar. S., Buriakovskyi, S. H., Petrushyn, A. D., Maslyi, An. S. (2013). Razrabotka elektropryvoda strelochnoho perevoda s ventylno-ynduktornym elektrodvyhatelem y yssledovanye na matematycheskoi modely rezhymov eho raboty. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI», 36, 198–201.
  2. Smyrnov, V. V., Buriakovskyi S. G. (2010). Rehulyruemyi strelochnyi elektropryvod. Mizhnarodnyi informatsii naukovo-tekhnichnyi zhurnal «Lokomotyv-inform», 7, 8–9.
  3. Kornienko, V. V., Omel'yanenko, V. I. (2007). Vy'sokoskorostnoj e'lektricheskij transport. Mirovoj opy't. Nacional'ny'j tekhnicheskij universitet «Khar'kovskij politekhnicheskij institut», 159.
  4. Lyubars'kyij, B. G., Yeritsian, B. Kh., Yakunin, D. I., Hliebova, M. L. (2015). Optymizatsiia parametriv liniinoho dvyhuna nakhylu kuzova transportnykh zasobiv. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI", 41, 58–66.
  5. Hovorukha, V. V. (2008). Proektyrovanye y vnedrenye strelochnikh perevodov dlia hornikh predpryiatyi. Sbornyk Donetskoho Natsyonalnoho tekhnycheskoho unyversyteta, 16 (142), 57–66.
  6. Kondratenko, S. L. (2011). Avtoperekliuchatel strelochnoho еlektropryvoda. Avtomatyka y telemekhanyka zheleznikh doroh Rossyy. Tekhnyka, tekhnolohyia, sertyfykatsyia, 1, 114–119.
  7. EBI Switch 2000. Available at: http://www.bombardier.com/content/dam/Websites/bombardiercom/supporting-documents/Sustainability/Reports/BT/Bombardier-Transportation-EPD-EBI-Switch-2000-en.pdf
  8. Liudvinavičius, L., Dailydka, S., Sładkowski, A. (2016). New possibilities of railway traffic control systems. Transport Problems, 11 (2), 133–142. doi: 10.20858/tp.2016.11.2.13
  9. Wang, P. Design of High-Speed Railway Turnouts. Available at: http://www.sciencedirect.com/science/book//9780323396172?via%3Dihub
  10. Zharinova, A. G. Pat. 95497 Ukrayina: MPK(2014.01) B61L 5/00. Elektropryvid strilochnogo perevodu. Zayavnyky ta patentovlasnyky Buryakovskyj S. G., Maslij A. S., Maslij A. S. # u201407676; declareted: 08.07.14; published: 25.12.14, Byul. 24, 4.
  11. Poliakov, V. O., Khachapuridze, M. M. (2007). Analysis and synthesis of the dynamics of electrodynamic trains with linear motor. Nauka ta progres transportu, 15, 159–166.
  12. Alonge, F., Cirrincione, M., D’Ippolito, F., Pucci, M., Sferlazza, A. (2016). Adaptive feedback linearizing control of linear induction motor considering the end-effects. Control Engineering Practice, 55, 116–126. doi: 10.1016/j.conengprac.2016.06.018
  13. Ganji, B., Askari, M. H. (2016). Analysis and modeling of different topologies for linear switched reluctance motor using finite element method. Alexandria Engineering Journal, 5. doi: 10.1016/j.aej.2016.07.017
  14. Yvanchenko, F. K., Krasnoshapka, V. A. (1983). Dynamyka metallurhycheskykh mashyn. Moscow: Metallurhyia, 295.
  15. Buriakovskyi, S. H., Smyrnov, V. V. (2008). Matematycheskaia model elektropryvoda strelochnoho perevoda s uchetom kharakterystyky trenyia. Visnyk natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut», 30, 329–330.
  16. Altaev, V. Y., Motoryn, V. Y. (1986). Optymyzatsyia v tekhnyke. Moscow: Myr, 350.
  17. Reznykov, Y. M. (1975). Strelochnye elektropryvody elektrycheskoi y horochnoi tsentralyzatsyy. Moscow: Transport, 152.
  18. Shtoier, R. (1992). Mnohokryteryalnaia optymyzatsyia. Moscow: Radyo y sviaz, 504.
  19. Weise, T. (2008). Global optimization algorithms theory and application. E-Book, 820.
  20. Severyn, V. P. (2013). Metodi mnohomernoi bezuslovnoi mynymyzatsyy. Nacional'ny'j tekhnicheskij universitet «Khar'kovskij politexnicheskij institut», 160.

Downloads

Published

2016-08-31

How to Cite

Buriakovskyi, S., Maslii, A., & Maslii, A. (2016). Determining parameters of electric drive of a sleeper-type turnout based on electromagnet and linear inductor electric motor. Eastern-European Journal of Enterprise Technologies, 4(1(82), 32–41. https://doi.org/10.15587/1729-4061.2016.75860

Issue

Section

Industrial and Technology Systems