Synthesis of integral quality index of parametric system state in conditions of situational uncertainty
DOI:
https://doi.org/10.15587/1729-4061.2016.85204Keywords:
information and entropy approach, integral factor, external and interconnect disturbances, uncertainty, information lossAbstract
The study considers the problem of synthesizing the integral index when the status quality of a parametric system is described under situational uncertainty. For this approach, it is natural to use an information and entropy criterion of evaluation. Unlike in the classic representation of a system, the situational uncertainty range is supplemented with interconnect uncertainty, which is inherent in any real system. Under such circumstances, the state of a parametric system is determined by a joint impact of the destabilizing factors of the environment and the compelling resource constraints of the system that are manifested at the physical level in the form of random external disturbances and interconnect perturbations.
It is suggested to assess the current state of the parametric system numerically by the average amount of information at its output, using a modified Shannon metric. This solution is developed through a synthesis of the integrated quality factor of the parametric system state, with determining the total and partial analytical forms of its presentation. Being multidimensional, the synthesized index establishes a single functional relationship between the system dimension, the information amount at its output, the parameters of the reference vector, as well as the dispersion levels of interconnect and external disturbances.
The study shows a practical application of the synthesized integral indicator of quality to evaluate numerically information losses at the output of the system, taking into account the combined effect of external and interconnect disturbances. The possibility of reducing the loss of information is considered with the introduction of an adaptive management regime.
References
- Tihonov, A. N., Arsenin, V. Ya. (1979). Metody resheniya nekorrektnyh zadach. 2nd edition. Moscow: Nauka: Glavnaya redakciya fiziko-matematicheskoj literatury, 285.
- Vasin, V. V., Ageev, A. L. (1993). Nekorrektnye zadachi s apriornoj informaciej. Ekaterinburg: UIF «Nauka», 262.
- Greshilov, A. A. (1984). Nekorrektnye zadachi cifrovoj obrabotki informacii i signalov. Moscow: Radio i svyaz', 160.
- Leonov, A. S. (2000). Obobshchenie metoda maksimal'noj ehntropii dlya resheniya nekorrektnyh zadach. Sibirskij matematicheskij zhurnal, 41 (4), 863–872.
- Repin, V. G., Tartakovskij, G. P. (1977). Statisticheskij sintez pri apriornoj neopredelyonnosti i adaptaciya informacionnyh sistem. Moscow: Sov. radio, 404.
- Petrov, V. V., Ageev, V. M., Zaporozhec, A. V., Kort'ev, A. V., Kostyukov, V. M., Medvedev, S. B., Polyakov, I. N. (1980). Informacionnaya teoriya slozhnyh sistem, funkcioniruyushchih v usloviyah nepolnoj informacii. V kn.: Itogi nauki i tekhniki. «Tekhnicheskaya kibernetika». Vol. 13. Moscow:VINITI, 121–137.
- Skachkov, V. V., Chepkij, V. V., Bratchenko, G. D., Efimchikov, A. N. (2015). Ehntropijnyj podhod k issledovaniyu informacionnyh vozmozhnostej adaptivnoj radiotekhnicheskoj sistemy pri vnutrisistemnoj neopredelennosti. Izvestiya vuzov. Radioehlektronika, 58 (6), 3–12.
- Kurzhanskij, A. B. (2006). Upravlenie i nablyudenie v usloviyah neopredelennosti. Moscow: Glavnaya redakciya fiziko-matematicheskoj literatury izdatel'stva «Nauka», 511.
- Ventcel', E. S. (1964). Vvedenie v issledovanie operacij. Moscow: Sovetskoe radio, 390.
- Skorik, B. I., Skorik, A. B., Zverev, A. A. (2009). K voprosu o teorii informacionnogo vzaimodejstviya slozhnyh tekhnicheskih sistem. Sistemi upravlіnnya, navіgacії ta zv’yazku, 4 (12), 116–119.
- Chumakov, N. M., Serebryanyj, E. I. (1980). Ocenka ehffektivnosti slozhnyh tekhnicheskih ustrojstv. Moscow: Sov. radio, 192.
- Podinovskij, V. V., Gavrilov, V. M. (1975). Optimizaciya po posledovatel'no primenyaemym kriteriyam. Moscow: Sov. radio, 192.
- Kini, R. L., Rajfa, H. (1981). Prinyatie reshenij pri mnogih kriteriyah: predpochteniya i zameshcheniya. Moscow: Radio i svyaz', 560.
- Gig, Dzh. Van. (1981). Prikladnaya obshchaya teoriya sistem. Moscow: Mir, 336.
- Dulesov, A. S., Semenova, M. Yu., Hrustalev, V. I. (2011). Svojstva ehntropii tekhnicheskoj sistemy. Fundamental'nye issledovaniya, 8, 631–636.
- Caro, E. (2016). Uncertainty analysis of power system state estimates and reference bus selection. Electric Power Systems Research, 136, 322–330. doi: 10.1016/j.epsr.2016.03.032
- Alqurashi, A., Etemadi, A. H., Khodaei, A. (2016). Treatment of uncertainty for next generation power systems: State-of-the-art in stochastic optimization. Electric Power Systems Research, 141, 233–245. doi: 10.1016/j.epsr.2016.08.009
- Moret, S., Bierlaire, M., Maréchal, F. (2016). Strategic Energy Planning under Uncertainty: a Mixed-Integer Linear Programming Modeling Framework for Large-Scale Energy Systems. 26th European Symposium on Computer Aided Process Engineering, 1899–1904. doi: 10.1016/b978-0-444-63428-3.50321-0
- Ji, L., Huang, G.-H., Huang, L.-C., Xie, Y.-L., Niu, D.-X. (2016). Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty. Energy, 109, 920–932. doi: 10.1016/j.energy.2016.05.018
- Mert, G., Waltemode, S., Aurich, J. C. (2014). Quality Assessment of Technical Product-service Systems in the Machine Tool Industry. Procedia CIRP, 16, 253–258. doi: 10.1016/j.procir.2014.06.002
- Cebeci, U. (2009). Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard. Expert Systems with Applications, 36 (5), 8900–8909. doi: 10.1016/j.eswa.2008.11.046
- Litescu, S. C., Viswanathan, V., Aydt, H., Knoll, A. (2016). The effect of information uncertainty in road transportation systems. Journal of Computational Science, 16, 170–176. doi: 10.1016/j.jocs.2016.04.017
- Wang, X., Liu, M., Ge, M., Ling, L., Liu, C. (2015). Research on assembly quality adaptive control system for complex mechanical products assembly process under uncertainty. Computers in Industry, 74, 43–57. doi: 10.1016/j.compind.2015.09.001
- Du, L., Choi, K. K., Youn, B. D., Gorsich, D. (2006). Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data. Journal of Mechanical Design, 128 (4), 928–935. doi: 10.1115/1.2204972
- Demin, D. A. (2012). Synthesis of optimal temperature regulator of electroarc holding furnace bath. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 52–58.
- Wang, C., Jiao, B., Guo, L., Tian, Z., Niu, J., Li, S. (2016). Robust scheduling of building energy system under uncertainty. Applied Energy, 167, 366–376. doi: 10.1016/j.apenergy.2015.09.070
- Shennon, K. (1963). Raboty po teorii informacii i kibernetike. Moscow: In. lit., 827.
- Manko, G. I., Kayun, I. G. (2008). Informacionnyj podhod k ocenke neopredelennosti upravlyayushchih vozdejstvij. Voprosy himii i himicheskoj tekhnologii, 1, 180–182.
- Vil'son, A. Dzh. (1978). Ehntropijnye metody modelirovaniya slozhnyh sistem. Moscow: Glavnaya redakciya fiziko-matematicheskoj literatury izdatel'stva «Nauka», 248.
- Novichihina, T. I. (2009). Ehntropijnyj podhod kak neot"emlemyj atribut polucheniya informacionnyh znanij. Mir nauki, kul'tury, obrazovaniya, 6 (18), 168–173.
- Mazur, M. (1974). Kachestvennaya teoriya informacii. Moscow: Mir, 238.
- Skachkov, V. V., Chepkij, V. V., Efimchikov, A. N., Bratchenko, G. D., Pavlovich, V. I. (2014). Ehntropijnoe ocenivanie vliyaniya vnutrisistemnyh vozmushchenij na informacionnye vozmozhnosti adaptivnoj radiotekhnicheskoj sistemy. In 4 volumes. Vol. 4. Integrirovannye informacionnye radioehlektronnye sistemy i tekhnologii, 55–59.
- Cheremisin, O. P. (1982). Ehffektivnost' adaptivnogo algoritma s regulyarizaciej vyborochnoj korrelyacionnoj matricy. Radiotekhnika i ehlektronika, 27 (10), 1933–1942.
- Gorban', I. I. (2014). Fenomen statisticheskoj ustojchivosti. Kyiv: Naukova dumka, 444.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Victor Chepkyi, Valeriy Skachkov, Sergey Volkov, Vladislav Pavlovich
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.