Synthesis of integral quality index of parametric system state in conditions of situational uncertainty

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.85204

Keywords:

information and entropy approach, integral factor, external and interconnect disturbances, uncertainty, information loss

Abstract

The study considers the problem of synthesizing the integral index when the status quality of a parametric system is described under situational uncertainty. For this approach, it is natural to use an information and entropy criterion of evaluation. Unlike in the classic representation of a system, the situational uncertainty range is supplemented with interconnect uncertainty, which is inherent in any real system. Under such circumstances, the state of a parametric system is determined by a joint impact of the destabilizing factors of the environment and the compelling resource constraints of the system that are manifested at the physical level in the form of random external disturbances and interconnect perturbations.

It is suggested to assess the current state of the parametric system numerically by the average amount of information at its output, using a modified Shannon metric. This solution is developed through a synthesis of the integrated quality factor of the parametric system state, with determining the total and partial analytical forms of its presentation. Being multidimensional, the synthesized index establishes a single functional relationship between the system dimension, the information amount at its output, the parameters of the reference vector, as well as the dispersion levels of interconnect and external disturbances.

The study shows a practical application of the synthesized integral indicator of quality to evaluate numerically information losses at the output of the system, taking into account the combined effect of external and interconnect disturbances. The possibility of reducing the loss of information is considered with the introduction of an adaptive management regime.

Author Biographies

Valeriy Skachkov, Military Academy Fontanskaya doroga str., 10, Odesa, Ukraine, 65009

Doctor of Technical Sciences, Professor, Senior Researcher

Scientific Research Laboratory

Victor Chepkyi, Military Academy Fontanskaya doroga str., 10, Odesa, Ukraine, 65009

PhD, Associate Professor, Senior Researcher

Scientific Research Laboratory

Sergey Volkov, Odesa State Academy of Technical Regulation and Quality Kovalska str., 15, Odesa, Ukraine, 65020

PhD, Associate Professor

Department of сomputer and information-measuring technology

Vladislav Pavlovich, Odesa State Academy of Technical Regulation and Quality, Kovalska str., 15, Odesa, Ukraine, 65020

Postgraduate student

Department of сomputer and information-measuring technology

References

  1. Tihonov, A. N., Arsenin, V. Ya. (1979). Metody resheniya nekorrektnyh zadach. 2nd edition. Moscow: Nauka: Glavnaya redakciya fiziko-matematicheskoj literatury, 285.
  2. Vasin, V. V., Ageev, A. L. (1993). Nekorrektnye zadachi s apriornoj informaciej. Ekaterinburg: UIF «Nauka», 262.
  3. Greshilov, A. A. (1984). Nekorrektnye zadachi cifrovoj obrabotki informacii i signalov. Moscow: Radio i svyaz', 160.
  4. Leonov, A. S. (2000). Obobshchenie metoda maksimal'noj ehntropii dlya resheniya nekorrektnyh zadach. Sibirskij matematicheskij zhurnal, 41 (4), 863–872.
  5. Repin, V. G., Tartakovskij, G. P. (1977). Statisticheskij sintez pri apriornoj neopredelyonnosti i adaptaciya informacionnyh sistem. Moscow: Sov. radio, 404.
  6. Petrov, V. V., Ageev, V. M., Zaporozhec, A. V., Kort'ev, A. V., Kostyukov, V. M., Medvedev, S. B., Polyakov, I. N. (1980). Informacionnaya teoriya slozhnyh sistem, funkcioniruyushchih v usloviyah nepolnoj informacii. V kn.: Itogi nauki i tekhniki. «Tekhnicheskaya kibernetika». Vol. 13. Moscow:VINITI, 121–137.
  7. Skachkov, V. V., Chepkij, V. V., Bratchenko, G. D., Efimchikov, A. N. (2015). Ehntropijnyj podhod k issledovaniyu informacionnyh vozmozhnostej adaptivnoj radiotekhnicheskoj sistemy pri vnutrisistemnoj neopredelennosti. Izvestiya vuzov. Radioehlektronika, 58 (6), 3–12.
  8. Kurzhanskij, A. B. (2006). Upravlenie i nablyudenie v usloviyah neopredelennosti. Moscow: Glavnaya redakciya fiziko-matematicheskoj literatury izdatel'stva «Nauka», 511.
  9. Ventcel', E. S. (1964). Vvedenie v issledovanie operacij. Moscow: Sovetskoe radio, 390.
  10. Skorik, B. I., Skorik, A. B., Zverev, A. A. (2009). K voprosu o teorii informacionnogo vzaimodejstviya slozhnyh tekhnicheskih sistem. Sistemi upravlіnnya, navіgacії ta zv’yazku, 4 (12), 116–119.
  11. Chumakov, N. M., Serebryanyj, E. I. (1980). Ocenka ehffektivnosti slozhnyh tekhnicheskih ustrojstv. Moscow: Sov. radio, 192.
  12. Podinovskij, V. V., Gavrilov, V. M. (1975). Optimizaciya po posledovatel'no primenyaemym kriteriyam. Moscow: Sov. radio, 192.
  13. Kini, R. L., Rajfa, H. (1981). Prinyatie reshenij pri mnogih kriteriyah: predpochteniya i zameshcheniya. Moscow: Radio i svyaz', 560.
  14. Gig, Dzh. Van. (1981). Prikladnaya obshchaya teoriya sistem. Moscow: Mir, 336.
  15. Dulesov, A. S., Semenova, M. Yu., Hrustalev, V. I. (2011). Svojstva ehntropii tekhnicheskoj sistemy. Fundamental'nye issledovaniya, 8, 631–636.
  16. Caro, E. (2016). Uncertainty analysis of power system state estimates and reference bus selection. Electric Power Systems Research, 136, 322–330. doi: 10.1016/j.epsr.2016.03.032
  17. Alqurashi, A., Etemadi, A. H., Khodaei, A. (2016). Treatment of uncertainty for next generation power systems: State-of-the-art in stochastic optimization. Electric Power Systems Research, 141, 233–245. doi: 10.1016/j.epsr.2016.08.009
  18. Moret, S., Bierlaire, M., Maréchal, F. (2016). Strategic Energy Planning under Uncertainty: a Mixed-Integer Linear Programming Modeling Framework for Large-Scale Energy Systems. 26th European Symposium on Computer Aided Process Engineering, 1899–1904. doi: 10.1016/b978-0-444-63428-3.50321-0
  19. Ji, L., Huang, G.-H., Huang, L.-C., Xie, Y.-L., Niu, D.-X. (2016). Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty. Energy, 109, 920–932. doi: 10.1016/j.energy.2016.05.018
  20. Mert, G., Waltemode, S., Aurich, J. C. (2014). Quality Assessment of Technical Product-service Systems in the Machine Tool Industry. Procedia CIRP, 16, 253–258. doi: 10.1016/j.procir.2014.06.002
  21. Cebeci, U. (2009). Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard. Expert Systems with Applications, 36 (5), 8900–8909. doi: 10.1016/j.eswa.2008.11.046
  22. Litescu, S. C., Viswanathan, V., Aydt, H., Knoll, A. (2016). The effect of information uncertainty in road transportation systems. Journal of Computational Science, 16, 170–176. doi: 10.1016/j.jocs.2016.04.017
  23. Wang, X., Liu, M., Ge, M., Ling, L., Liu, C. (2015). Research on assembly quality adaptive control system for complex mechanical products assembly process under uncertainty. Computers in Industry, 74, 43–57. doi: 10.1016/j.compind.2015.09.001
  24. Du, L., Choi, K. K., Youn, B. D., Gorsich, D. (2006). Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data. Journal of Mechanical Design, 128 (4), 928–935. doi: 10.1115/1.2204972
  25. Demin, D. A. (2012). Synthesis of optimal temperature regulator of electroarc holding furnace bath. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 52–58.
  26. Wang, C., Jiao, B., Guo, L., Tian, Z., Niu, J., Li, S. (2016). Robust scheduling of building energy system under uncertainty. Applied Energy, 167, 366–376. doi: 10.1016/j.apenergy.2015.09.070
  27. Shennon, K. (1963). Raboty po teorii informacii i kibernetike. Moscow: In. lit., 827.
  28. Manko, G. I., Kayun, I. G. (2008). Informacionnyj podhod k ocenke neopredelennosti upravlyayushchih vozdejstvij. Voprosy himii i himicheskoj tekhnologii, 1, 180–182.
  29. Vil'son, A. Dzh. (1978). Ehntropijnye metody modelirovaniya slozhnyh sistem. Moscow: Glavnaya redakciya fiziko-matematicheskoj literatury izdatel'stva «Nauka», 248.
  30. Novichihina, T. I. (2009). Ehntropijnyj podhod kak neot"emlemyj atribut polucheniya informacionnyh znanij. Mir nauki, kul'tury, obrazovaniya, 6 (18), 168–173.
  31. Mazur, M. (1974). Kachestvennaya teoriya informacii. Moscow: Mir, 238.
  32. Skachkov, V. V., Chepkij, V. V., Efimchikov, A. N., Bratchenko, G. D., Pavlovich, V. I. (2014). Ehntropijnoe ocenivanie vliyaniya vnutrisistemnyh vozmushchenij na informacionnye vozmozhnosti adaptivnoj radiotekhnicheskoj sistemy. In 4 volumes. Vol. 4. Integrirovannye informacionnye radioehlektronnye sistemy i tekhnologii, 55–59.
  33. Cheremisin, O. P. (1982). Ehffektivnost' adaptivnogo algoritma s regulyarizaciej vyborochnoj korrelyacionnoj matricy. Radiotekhnika i ehlektronika, 27 (10), 1933–1942.
  34. Gorban', I. I. (2014). Fenomen statisticheskoj ustojchivosti. Kyiv: Naukova dumka, 444.

Downloads

Published

2016-12-19

How to Cite

Skachkov, V., Chepkyi, V., Volkov, S., & Pavlovich, V. (2016). Synthesis of integral quality index of parametric system state in conditions of situational uncertainty. Eastern-European Journal of Enterprise Technologies, 6(3 (84), 11–18. https://doi.org/10.15587/1729-4061.2016.85204

Issue

Section

Control processes