A study of the technological reliability of railway stations by an example of transit trains processing
DOI:
https://doi.org/10.15587/1729-4061.2017.91074Keywords:
technological reliability, failure probability, reliability, timely arrival, timely departure, technological conflict, inter-operational downtime, simulation modellingAbstract
The study reveals an influence of the main technological parameters on the probability of failing and uptime work to receive and dispatch transit cargo trains in time. The determined regularities concern failures resulting from changes in the daily load, the technological equipment of transit depots, and uneven sizes of arriving and departing flows of trains. The importance of the research is grounded on a lack of objective assessment of the reliability of a standard operational model of processes that take place at maintenance depots for railway transport, which means that it is essential to determine the probability of failure of timely receipt and dispatch of cargo trains.
The level of failure and the trouble-free uptime are mainly affected by the size of the operational fleet of train locomotives, the uneven number of daily trains, and the minimal pre-set intervals of associated arrivals and departures of trains.
The research has established that the existing standards ensure the required level of reliability (the probability of a timely acceptance of trains at 95 %). However, the time of trains’ staying on receiving and departure tracks exceeds the norm almost 4 times, which minimizes the likelihood of timely departures of trains. The probability of failure in timely departures is not taken into account by the current regulations; therefore, it is suggested that such a standard should be introduced.
The undertaken tests facilitate objective evaluation of the reliability of the typical technological processes that take place at technical railway stations and entail the need to review the methods of its rationing.
References
- Paramonov, Y., Tretyakov, S., Hauka, M. (2015). Binary lambda-set function and reliability of airline. Reliability: theory & applications, 10 (03 (38)), 37–42.
- Breznicka, A., Chovanec, A. (2015). Mathematic and simulation modeling for analysis prediction of risk. Reliability: theory & applications,10 (04 (39)), 29–34.
- Stepanyants, A. S., Victorova, V. S. (2010). Reliability and capability modeling of technological systems with buffer storage. Reliability: theory & applications, 1 (02 (17)), 40–49.
- Kolowrocki, K., Kwiatuszewska-Sarnecka, B., Soszynska, J. (2010). Preliminary reliability, risk and availability analysis and evaluation of bulk cargo transportation system in variable operation conditions. Reliability: theory & applications, 1 (2 (17)), 173–183.
- Shramenko, N. Ju. (2015). Effect of process-dependent parameters of the handling-and-storage facility operation on the cargo handling cost. Eastern-European Journal of Enterprise Technologies, 5 (3 (77)), 43–47. doi: 10.15587/1729-4061.2015.51396
- Skalozub, V. V., Ivanov, O. P., Shvec', O. M. (2015). Nechitki modeli upravlinnja ekspluatacijeju tehnichnyh system dlja zabezpechennja stijkosti zaliznychnyh perevezen'. Transportni systemy i tehnologii' perevezen', 9, 65–71.
- Butko, T., Prokhorchenko, A., Muzykin, M. (2016). An improved method of determining the schemes of locomotive circulation with regard to the technological peculiarities of railcar traffic. Eastern-European Journal of Enterprise Technologies, 5 (3 (83)), 47–55. doi: 10.15587/1729-4061.2016.80471
- Tartakovskyi, E., Gorobchenko, O., Antonovych, A. (2016). Improving the process of driving a locomotive through the use of decision support systems. Eastern-European Journal of Enterprise Technologies, 5 (3 (83)), 4–11. doi: 10.15587/1729-4061.2016.80198
- Katsman, M. D., Myronenko, V. K., Matsiuk, V. I. (2015). Mathematical models of ecologically hazardous rail traffic accidents. Reliability: theory & applications, 10 (01 (36)), 28–39.
- Myronenko, V. K., Kacman, M. D., Gorbaha, M. M., Macjuk, V. I. (2015). Matematychna model' staniv ta nadijnosti zaliznychnoi' transportnoi' systemy pry perevezennjah nebezpechnyh vantazhiv. Systemy obrobky informacii', 9, 161–167.
- Macjuk, V. I. (2015). Doslidzhennja tehnologichnoi' nadijnosti parkiv tehnichnyh stancij dyskretno-podijevym modeljuvannjam. Zbirnyk naukovyh prac' Derzhavnogo ekonomiko-tehnologichnogo universytetu transportu. Serija: Transportni systemy i tehnologii', 26-27, 268–272.
- Macjuk, V. I. (2016). Pryncypy zabezpechennja tehnologichnoi' nadijnosti zaliznychnyh transportnyh system. Zbirnyk naukovyh prac' Derzhavnogo ekonomiko-tehnologichnogo universytetu transportu. Serija: Transportni systemy i tehnologii', 28, 262–271.
- Samsonkin, V. M., Adzhavenko, M. M. (2014). Rozrobka modelej ocinky vplyvu ljuds'kogo chynnyka na innovacijnyj rozvytok pidpryjemstv zaliznychnogo transportu. Problemy ekonomiky, 1, 77–82. Available at: http://nbuv.gov.ua/UJRN/Pekon_2014_1_11
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Viacheslav Matsiuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.