The development of an artificial energotechnological process with the induced heat and mass transfer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.91748

Keywords:

artificial energy technology process, thermostat, obturator, the effect of induced heat and mass transfer

Abstract

The study justifies the importance of developing “artificial” energy technology processes. The “start-up” of these processes under natural conditions does not meet the conditions for the processes that are truly natural. For “artificial” processes, it is common that at least one or more parameters or properties of the system can have no “affinity” with the environment. The system properties may acquire the equilibrium value only after overcoming some energy activation barrier. One of these new artificial processes is a process of an induced heat and mass transfer (InHMT). The aim of the study is to determine the necessary and sufficient conditions as well as to develop balance equations for technical applications of the InHMT process, based on generalizing theoretical and experimental data obtained so far. The phenomenon of the “artificial” energy technology process of InHMT is observed in a thermostat. The InHMT process consists in inducing an intensive removal of the liquid phase from the thermostat volume as well as in an intensive dissipation of heat while the system in moving from an unstable equilibrium to a stable equilibrium.

Balance equations for the InHMT effect have been developed on the basis of the observed facts in the case of fluctuations in the concentration of particles in a continuous gaseous medium inside the thermostat due to fluctuations of the concentration of particles in the volume of the obturator under the impact of an external continuous gas medium. These equations have helped determine that the heat, which is dissipated during the InHMT process due to the removal of the mass flow into the environment, depends on the physical properties of the liquid, the way of filling the thermostat volume, and the structure of the obturator.

Author Biographies

Micola Pogozhikh, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor, Head of Department

Department of physical and mathematical and engineering-technical disciplines

Andrey Pak, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of physical and mathematical and engineering-technical disciplines

References

  1. Lysenko, L. V. (Ed.) (2000). Jenergotehnologicheskie processy. Problemy i perspektivy. Moscow: Izd-vo MGTU im. N. Je. Baumana, 190.
  2. Bykov, G. A., Bykova, O. G., Lupashevskaja, V. Ju. (2010). Sistemnyj analiz termodinamiki jenergotehnologicheskih processov teplovyh mashin. Jenergosberezhenie. Jenergetika. Jenergoaudit, 12, 37–42.
  3. Grandy, W. T. Jr. (2008). Entropy and the Time Evolution of Macroscopic Systems. New York: Oxford University Press. doi: 9780199546176.001.0001
  4. Schmidt-Rohr, K. (2014). Expansion Work without the External Pressure and Thermodynamics in Terms of Quasistatic Irreversible Processes. Journal of Chemical Education, 91 (3), 402–409. doi: 10.1021/ed3008704
  5. Saha, A., Lahiri, S., Jayannavar, A. M. (2009). Entropy production theorems and some consequences. Physical Review E, 80 (1). doi: 10.1103/physreve.80.011117
  6. Kvasnikov, I. A. (2002). Termodinamika i statisticheskaja fizika. Vol. 1. Teorija ravnovesnyh sistem: Termodinamika. Moscow: Editorial URSS, 240.
  7. Steurer, W. (2004). Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Zeitschrift Für Kristallographie – Crystalline Materials, 219 (7). doi: 10.1524/zkri.219.7.391.35643
  8. Yacobi, B. G. (2003). Semiconductor Materials: An Introduction to Basic Principles. Springer US, 215. doi: 10.1007/b105378
  9. Matthiesen, J., Wendt, S., Hansen, J. O., Madsen, G. K. H., Lira, E., Galliker, P. et. al. (2009). Observation of All the Intermediate Steps of a Chemical Reaction on an Oxide Surface by Scanning Tunneling Microscopy. ACS Nano, 3 (3), 517–526. doi: 10.1021/nn8008245
  10. Nacional'nyj plan dij z vidnovljuvanoi' energetyky na period do 2020 roku. Derzhenergoefektyvnosti Ukrai'ny. Avaialble at: http://saee.gov.ua/sites/default/files/documents/Presentation_NAPRES_Norw_OCT_3_ukr.pdf
  11. Dooge, J. C. I. (2001). Concepts of the hydrological Cycle. Ancient and modern. International Symposium OH2 «Origins and History of Hydrology». Dijon, 1–10.
  12. Lule, F., Koyuncu, T. (2015). Convective and Microwave Drying Characteristics of Sorbus Fruits (Sorbus domestica L.). Procedia – Social and Behavioral Sciences, 195, 2634–2643. doi: 10.1016/j.sbspro.2015.06.467
  13. Aktas, M., Sevik, S., Amini, A., Khanlari, A. (2016). Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Solar Energy, 137, 500–515. doi: 10.1016/j.solener.2016.08.036
  14. Hassini, L., Peczalski, R., Gelet, J.-L. (2015). Drying of granular medium by hot air and microwaves. Modeling and prediction of internal gas pressure and binder distribution. Powder Technology, 286, 636–644. doi: 10.1016/j.powtec.2015.09.009
  15. Ceschan, N. E., Bucala, V., Ramirez-Rigo, M. V., Smyth, H. D. C. (2016). Impact of feed counterion addition and cyclone type on aerodynamic behavior of alginic-atenolol microparticles produced by spray drying. European Journal of Pharmaceutics and Biopharmaceutics, 109, 72–80. doi: 10.1016/j.ejpb.2016.09.020
  16. Pogozhih, N. I., Potapov, V. A., Curkan, N. M. (1994). Pat. No. 2096962 RF. Sposob sushki pishhevyh produktov. MKI A23 V7/03. No. 94033280/13; declareted: 13.09.1994; published: 22.06.1995, Bul. No. 40, 3.
  17. Pogozhyh, M. I., Pak, A. O., Zherebki, M. V. (2011). Internal factors of hydrothermal processing grains with using of the principles of MHT-drying. Eastern-European Journal of Enterprise Technologies, 5 (3 (53)), 60–64. Available at: http://journals.uran.ua/eejet/article/view/1197/1101
  18. Pogozhyh, M. I., Pak, A. O., Zherebkin, M. V. (2012). The power distribution function of dissipative formations in the FC during MHT-drying. Eastern-European Journal of Enterprise Technologies, 2 (12 (56)), 63–67. Available at: http://journals.uran.ua/eejet/article/view/3936/3604
  19. Potapov, V. O., Grycenko, O. Ju.; Cherevko, O. I. (Ed.) (2014). Analiz energoefektyvnosti procesu sushinnja v teplomasoobminnomu moduli za umovy pidvyshhenogo tysku. Progresyvni tehnika ta tehnologii' harchovyh vyrobnyctv restorannogo gospodarstva i torgivli, 1 (19), 133–141.
  20. Pogozhyh, M. I., Pak, A. O., Curkan, M. M. (2009). Sushinnja plodovo-jagidnoi' syrovyny sposobom zmishanogo teplopidvodu zi shtuchnym poroutvorennjam. Kharkiv: HDUHT, 102.
  21. Potapov, V. A., Jakushenko, E. N., Zherebkin, M. V. (2013). Analysis of the drying methods and evaluation of the quality of dried grape pomace. Eastern-European Journal of Enterprise Technologies, 6 (11 (66)), 38–41. Available at: http://journals.uran.ua/eejet/article/view/19170/17021
  22. Sachkov, Ju. V. Dinamicheskaja sistema. Akademik. Available at: http://dic.academic.ru/dic.nsf/enc_philosophy/8265/Динамические%20системы
  23. Cherevko, O. I., Pogozhyh, M. I., Zherebkin, M. V., Pak, A. O., Curkan, M. M. (2009). Pat. No. 48230. Ustanovka dlja gidrotermichnoi' obrobky ta sushinnja krupy. MPK A 23 L 3/00. No. U2009 09646; declareted: 21.09.2009; published: 10.03.2010, Bul. No. 5, 4.
  24. Pogozhyh, M. I., Pak, A. O., Pak, A. V. et. al. (2014). Gidrotermichna obrobka krup iz vykorystannjam pryncypiv sushinnja zmishanym teplopidvodom. Kharkiv: HDUHT, 170.

Downloads

Published

2017-02-23

How to Cite

Pogozhikh, M., & Pak, A. (2017). The development of an artificial energotechnological process with the induced heat and mass transfer. Eastern-European Journal of Enterprise Technologies, 1(8 (85), 50–57. https://doi.org/10.15587/1729-4061.2017.91748

Issue

Section

Energy-saving technologies and equipment