Analysis of kinetics pattern in the formation and separation of a drop of fluid in the form of a capsule

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.98537

Keywords:

lipids, capsulation, kinetics, shell, calcium alginate, separation of a drop, bridge of a drop, germ of a drop, current

Abstract

Capsulation, as a technological principle, can provoke the activation of innovations in the food industry and cause the development and implementation of new scientifically substantiated technologies for processing the raw materials, creating new product shapes, convenient in the consumption, increasing production volumes and efficiency of food products, development and application of modern fundamentally new technologies, technological processes, techniques and equipment that collectively are able to significantly affect the state and development of food technologies.

Taking into account the laws of gravity and the use of methods of systems analysis, we devised a model of capsule-formation of fluids, different in origin, by the method of extrusion. Kinetics of the formation of a capsular structure is defined, as well as the patterns for obtaining the spherical shapes of different diameter. The obtained regularities are the basis of scientific and technological principles of obtaining the capsulated oil and fat products with the thermo- and acid stable properties.

It is demonstrated theoretically that the main factor that limits the process of formation and separation of a drop is the stage of germ formation and a drop in particular. Duration of the germ and drop formation is much longer (by about 20 times) than the time of a bridge breakaway. The presence in capsulated fluids of a shell significantly affects both the dimensions of a bridge and a drop and the time of the processes of forming a drop and its separation. In this case, an increase in the relative coefficient of surface tension by 3 times increases the radius of a drop by 1.6 times, and the overall time of the formation separation of a drop by 2.5 times. Resulting equations might be applied in the experimental verification of the proposed model for the formation and separation of a drop of fluid.

Author Biographies

Volodymyr Potapov, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor, Head of Department

Department of trade and refrigeration equipment and applied mechanics

Olga Neklesa, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of technology of bread, confectionery, pasta and food concentrates

Pavlo Pyvovarov, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Food Technology 

References

  1. Allen, T. M. (2004). Drug Delivery Systems: Entering the Mainstream. Science, 303 (5665), 1818–1822. doi: 10.1126/science.1095833
  2. Sahatjian, R. (1991). Pat. No. US5304121 A. Drug delivery system making use of a hydrogel polymer coating. Int. Cl. А61М 31/00. US. Cl. 604/53, 604/96, 604/265, 606/194. No. US 07/795,976; declareted: 22.11.1991; published: 19.04.1994.
  3. Manaenkov, O. V. (2004). Vliyanie uslovij formirovaniya struktury al'ginatnyh kapsul na kinetiku diffuzii inkapsulirovannyh biologicheski aktivnyh veshchestv. Vestnik Tverskogo gosudarstvennogo tekhnicheskogo universiteta, 5, 96–99.
  4. Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 293 (1), 483–496. doi: 10.1016/j.jmmm.2005.01.064
  5. Kondratyuk, N. V., Pyvovarov, Ye. P., Kalashnikova, K. I., Babiy, K. Ye. (2010). Doslidzhennya vplyvu molekulyarnykh rozchyniv ta rozchyniv elektrolitiv na fizyko-khimichni kharakterystyky al'hinatnykh kapsul. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodasrtva i torhivli, 1 (13), 303–309.
  6. Pyvovarov, Ye. P., Hrynchenko, O. O., Ivanov, S. V. (2013). Model' kinetyky kapsuloutvorennya kharchovykh system na osnovi natriyu al'hinatu. Naukovi pratsi NUKhT, 53, 93–105.
  7. Nahornyy, O. Yu., Pyvovarov, Ye. P. (2010). Zakonomirnosti formuvannya masy obolonok kapsul, oderzhanykh shlyakhom ionotropnoho heleutvorennya. Naukovi pratsi Odes'koyi nats. akad. kharch. tekhn., 38, 166–173.
  8. Moroz, O. V. (2013). Naukove obhruntuvannya zmishanoho drahleutvorennya v tekhnolohiyakh termostabil'nykh nachynok. Prohresyvni tekhnika i tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 2 (18), 42–47.
  9. Peake, N. J., Pavlov, A. M., D’Souza, A., Pingguan-Murphy, B., Sukhorukov, G. B., Hobbs, A. J., Chowdhury, T. T. (2015). Controlled Release of C-Type Natriuretic Peptide by Microencapsulation Dampens Proinflammatory Effects Induced by IL-1β in Cartilage Explants. Biomacromolecules, 16 (2), 524–531. doi: 10.1021/bm501575w
  10. Wurth, R., Hormannsperger, G., Wilke, J., Foerst, P., Haller, D., Kulozik, U. (2015). Protective effect of milk protein based microencapsulation on bacterial survival in simulated gastric juice versus the murine gastrointestinal system. Journal of Functional Foods, 15, 116–125. doi: 10.1016/j.jff.2015.02.046
  11. Pyvovarov, P. P., Hrynchenko, O. O., Pyvovarov, Y. P., Nahornyi, O. Y. (2009). Pat. No. 94959 UA. Method for obtaining gelatinous capsules containing fat phase and aqueous one. MPK A23P1/04, A61K9/48. No. a200901885; declareted:03.03.2009; published: 25.06.2011, Bul. No. 12.
  12. Shi, X. D., Brenner, M. P., Nagel, S. R. (1994). A Cascade of Structure in a Drop Falling from a Faucet. Science, 265 (5169), 219–222. doi: 10.1126/science.265.5169.219
  13. Harkins, W. D., Brown, F. E. (1919). The determination of surface tension (free surface energy), and the weight of falling drops: the surface tension of water and benzene by the capillary height method. Journal of the American Chemical Society, 41 (4), 499–524. doi: 10.1021/ja01461a003
  14. Zhang, X., Basaran, O. A. (1995). An experimental study of dynamics of drop formation. Physics of Fluids, 7 (6), 1184–1203. doi: 10.1063/1.868577
  15. Prohorov, V. E., Chashechkin, Yu. D. (2014). Dinamika otryva odinochnyh kapel' v vozdushnoj srede. Mekhanika zhidkosti i gaza, 4, 109–118.
  16. Peregrine, D. H., Shoker, G., Symon, A. (1990). The bifurcation of liquid bridges. Journal of Fluid Mechanics, 212 (-1), 25. doi: 10.1017/s0022112090001835
  17. Keller, J. B., Miksis, M. J. (1983). Surface Tension Driven Flows. SIAM Journal on Applied Mathematics, 43 (2), 268–277. doi: 10.1137/0143018
  18. Ambravaneswaran, B., Basaran, O. A. (1999). Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges. Physics of Fluids, 11 (5), 997–1015. doi: 10.1063/1.869972
  19. Burton, J. C., Rutledge, J. E., Taborek, P. (2004). Fluid Pinch-Off Dynamics at Nanometer Length Scales. Physical Review Letters, 92 (24). doi: 10.1103/physrevlett.92.244505
  20. Neklesa, O., Potapov, V., Pyvovarov, P. (2017). Investigation of the kinetic model for the process of liquid drops formation in the form of capsule. EUREKA: Life Sciences, 2, 3–14. doi: 10.21303/2504-5695.2017.00325

Downloads

Published

2017-04-29

How to Cite

Potapov, V., Neklesa, O., & Pyvovarov, P. (2017). Analysis of kinetics pattern in the formation and separation of a drop of fluid in the form of a capsule. Eastern-European Journal of Enterprise Technologies, 2(10 (86), 32–40. https://doi.org/10.15587/1729-4061.2017.98537

Issue

Section

Technology and Equipment of Food Production