Development of specialized services for predicting the business activity indicators based on micro–service architecture

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.98991

Keywords:

information systems, forecasting models, micro-service architecture, neural networks, distributed objects

Abstract

The proposed mathematical model of specialized services for the prediction of arbitrary indicators of company activity is presented as a part of the micro-service architecture of the information system of an enterprise and provides dynamic replacement or addition of the prediction models without changing the overall algorithm of service operation. This model assigns a formal basis for the intra-component interaction of the service and makes it possible to change, add, and delete prediction services without the need for resetting the information environment of a company.

The prediction model was proposed as a part of the prediction service of the company IS, based on neural network with the embedded model of moving average. This model allowed improvement of quality of predictive assessment in the case of existence of a trend in comparison with the classical neural network model due to the embedded model of moving average.

The algorithm was developed for training a neural network forecasting model with the embedded moving average model, based on the inverse error spread, which allows us to tune the model to the examined time series.

We considered practical aspects of using a specialized prediction service, a client application to this service, which clearly demonstrates its functionality under the mode of checking appropriateness of using a certain prediction model on a specific type of preset data.

Author Biographies

Iryna Oksanych, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Associate Professor

Department of Information and Control Systems

Igor Shevchenko, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

Doctor of Technical Science, Professor

Department of Information and Control Systems

Ilona Shcherbak, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD

Department of Information and Control Systems

Serhii Shcherbak, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, Ukraine, 39600

PhD, Associate Professor

Department of Information and Control Systems

References

  1. Paklyn, N. B., Oreshkov, V. Y. (2013). Byznes-analytyka ot dannykh k znanyyam. Stankt-Petersburg: Piter, 704.
  2. Boner, J. (2016). Reactive Microservices Architecture. Design Principles for Distributed Systems. United States of America: O’Reilly, 48.
  3. Richards, M. (2016). Microservices vs. Service-Oriented Architecture. United States of America: O’Reilly, 45.
  4. Richards, M. (2016). Microservices, AntiPatterns and Pitfalls. United States of America: O’Reilly, 55.
  5. Shappell, D. (2008). ESB – Enterprise Service Bus. Sankt-Petersburg: BHV-Petersburg, 368.
  6. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M. (2016). Microservice Architecture. Aligning Principles, Practices, and Culture. O’Reilly, 128.
  7. Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control. US: John Wiley & Sons., 784. doi: 10.1002/9781118619193
  8. Hyndman, R. J., Athanasopoulos, G. (2013). Forecasting: principles and practice. OTexts: Melbourne, Australia, 2013. Available at: http://otexts.org/fpp/2/3
  9. Kabakova, R. (2014). R v deystvyy. Analyz y vyzualyzatsyya dannykh na yazyke R. Moscow: DMK Press, 580.
  10. Petrenko, V. R., Kudelyna, K. A., Shepel', L. H. (2006). Syntez ARIMA-modeley dynamyky tekhnyko-ekonomycheskykh pokazateley proyzvodstva monokrystallycheskoho kremnyya. Novye tekhnolohyy, 2, 189–196.
  11. Petrenko, V. R., Kudelyna, K. A. (2008). Neyromerezhevyy pidkhid do strukturnoyi identyfikatsiyi ARMA-modeley chasovykh poslidovnostey. Skladni systemy i protsesy, 1 (13), 87–93.
  12. Rukkas, K. M., Solyanyk, Yu. V., Ovchynnykov, K. A., Olotu Oluvatosyn Davyd (2014). Sravnytel'nyy analyz metodov prohnozyrovanyya trafyka v telekommunykatsyonnykh systemakh. Elektronnoe nauchnoe spetsyalyzyrovannoe yzdanye – zhurnal «Problemy telekommunykatsyy», 1 (13), 84–95.
  13. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. doi: 10.1016/s0925-2312(01)00702-0
  14. Halushka, Y. N., Shcherbak, S. S. (2015). Ynformatsyonnye tekhnolohyy razrabotky spetsyalyzyrovannykh system yntehratsyy korporatyvnykh dannykh v uslovyyakh strukturnoy neopredelennosty. Systemy obrobky informatsiyi, 5 (130), 152–156.
  15. Ul'man, Dzh., Radzharaman, A., Leskovets, Yu. (2016). Analyz bol'shykh naborov dannykh. Мoscow: DMK Press, 498.

Downloads

Published

2017-04-26

How to Cite

Oksanych, I., Shevchenko, I., Shcherbak, I., & Shcherbak, S. (2017). Development of specialized services for predicting the business activity indicators based on micro–service architecture. Eastern-European Journal of Enterprise Technologies, 2(2 (86), 50–55. https://doi.org/10.15587/1729-4061.2017.98991