Studying the operational efficiency of the centrifugal-impact feed grain crusher of the new design

Authors

  • Michael Volkhonov Federal State Budgetary Educational Institution of Higher Education "Kostroma State Agricultural Academy" Training Town, 34, Karavaevo vil., Kostroma reg., Russia, 156530, Russian Federation https://orcid.org/0000-0003-0332-8848
  • Anton Abalikhin Federal State Budgetary Educational Institution of Higher Education "Ivanovo State Agricultural Academy named after D. K. Belyaev" Sovetskaya str., 45, Ivanovo, Russia, 153012, Russian Federation https://orcid.org/0000-0002-8138-6317
  • Alexander Krupin Federal State Budgetary Educational Institution of Higher Education "Ivanovo State Agricultural Academy named after D. K. Belyaev" Sovetskaya str., 45, Ivanovo, Russia, 153012, Russian Federation https://orcid.org/0000-0002-0006-1810
  • Ivan Maximov Federal State Budgetary Educational Institution of Higher Education "Chuvash state agricultural Academy" K. Marx str., 29, Cheboksary, Russia, 428032, Russian Federation https://orcid.org/0000-0002-7740-0059

DOI:

https://doi.org/10.15587/1729-4061.2020.212994

Keywords:

feed grain, centrifugal-impact crusher, coarsely ground grain, grain grinding degree, grain crusher

Abstract

Crushing feed grain involves hammer crushers, which are characterized by high specific energy consumption and its uneven fractional composition. It is possible to obtain high-quality shredded grain with less energy when using a centrifugal-impact crusher of the new design with a hole in the loading neck to supply the chopping chamber with additional air at a rate of up to 4.8 m/s. An additional hole provides a 1.8...13-time increase in the airspeed through the unloading neck when the rotor’s rotation frequency changes from 3,750 to 2,250 min–1, thereby enabling the timely evacuation of the shredded material from the crusher.

The regression equations have been derived to determine the structural and regime parameters of the shredder, which ensure the maximal performance and minimal unit energy costs. The greatest impact on crusher productivity is exerted by the diameter of the sieve holes and the area of the bunker’s unloading window. The greatest effect on the specific energy intensity of the grinding process is exerted by the diameter of the sieve holes. The maximal performance of the crusher, 1,440 kg/h, and the minimal energy capacity, taking into consideration the achieved grinding degree, of 2.1 W∙s/(kg∙grinding degree unit), are observed when using a sieve with the holes’ diameter of 7 mm, the rotor’s rotation frequency of 3,500 min–1, and the maximally open unloading window of the bunker, at F=1.458 m2·10–3. The specific energy consumption for chopping barley is less by 1.22...1.89 times than that of the hammer crushers RVO 35, DB-5, KD-2A. The dust-like fraction is less than 5.74 %, which is half the amount of the hammer crusher DM-6. The rational crusher operation modes have been determined in order to prepare feed grain for feeding farm animals of different species and ages

Author Biographies

Michael Volkhonov, Federal State Budgetary Educational Institution of Higher Education "Kostroma State Agricultural Academy" Training Town, 34, Karavaevo vil., Kostroma reg., Russia, 156530

Doctor of Technical Sciences, Professor

Department of Technical Systems in the Agro-Industrial Complex

Anton Abalikhin, Federal State Budgetary Educational Institution of Higher Education "Ivanovo State Agricultural Academy named after D. K. Belyaev" Sovetskaya str., 45, Ivanovo, Russia, 153012

PhD, Associate Professor

Department of Technical Service and Mechanics

Alexander Krupin, Federal State Budgetary Educational Institution of Higher Education "Ivanovo State Agricultural Academy named after D. K. Belyaev" Sovetskaya str., 45, Ivanovo, Russia, 153012

Senior Lecturer

Department of Technical Systems in Agribusiness

Ivan Maximov, Federal State Budgetary Educational Institution of Higher Education "Chuvash state agricultural Academy" K. Marx str., 29, Cheboksary, Russia, 428032

Doctor of Technical Sciences, Professor

Department of Transport and Technological Machines and Complexes

References

  1. Lebedev, A. T., Pavlyuk, R. V., Zaharin, A. V., Lebedev, P. A. (2016). Providing for quality grinding grain for the implementation of the biological potential of productive animals. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7 (2), 513–516. Available at: https://www.elibrary.ru/item.asp?id=43198352
  2. Savinyh, P., Kazakov, V., Moshonkin, A., Ivanovs, S. (2019). Investigations in feeding device of grain crusher. 18th International Scientific Conference Engineering for Rural Development Proceedings. doi: https://doi.org/10.22616/erdev2019.18.n165
  3. Healy, B. J., Hancock, J. D., Kennedy, G. A., Bramel-Cox, P. J., Behnke, K. C., Hines, R. H. (1994). Optimum particle size of corn and hard and soft sorghum for nursery pigs. Journal of Animal Science, 72 (9), 2227–2236. doi: https://doi.org/10.2527/1994.7292227x
  4. Semenikhin, A. M., Gurinenko, L. A., Ivanov, V. V., Shkondin, V. N. (2014). The peculiarities of grain deformation by choppers working parts. Nauchniy zhurnal KubGAU, 97 (03). Available at: http://ej.kubagro.ru/2014/03/pdf/03.pdf
  5. Marczuk, A., Blicharz-Kania, A., Savinykh, P. A., Isupov, A. Y., Palichyn, A. V., Ivanov, I. I. (2019). Studies of a Rotary–Centrifugal Grain Grinder Using a Multifactorial Experimental Design Method. Sustainability, 11 (19), 5362. doi: https://doi.org/10.3390/su11195362
  6. Abalikhin, A. M., Lapshin, V. B. (2013). Cenrifugal Miller For Fodder Grain. Agrarian journal of the Upper Volga Region, 2 (3), 42–44. Available at: https://www.elibrary.ru/item.asp?id=20501852
  7. Zolotarev, A. M., Trufanov, V. V., Druzhinin, R. A., Yarovoy, M. N. (2018). On the rationale of operating parameters of an impact centrifugal crusher. Vestnik of Voronezh State Agrarian University, 1 (56), 119–127. doi: https://doi.org/10.17238/issn2071-2243.2018.1.119
  8. Lopatin, L. A. (2018). Investigation and optimization of the working process of the crusher grain percussion. Bulletin NGIEI, 6 (85), 27–36. Available at: https://cyberleninka.ru/article/n/issledovanie-i-optimizatsiya-rabochego-protsessa-drobilki-zerna-udarnogo-deystviya/viewer
  9. FAO Cereal Supply and Demand Brief. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/worldfoodsituation/csdb/ru/
  10. Iskenderov, R., Lebedev, A., Zacharin, A., Lebedev, P. (2018). Evaluating effectiveness of grinding process grain materials. Engineering for Rural Development. Proceedings, 102–108. doi: https://doi.org/10.22616/erdev2018.17.n147
  11. Savinyh, P., Shirobokov, V., Fedorov, O., Ivanovs, S. (2018). Influence of rotary grain crusher parameters on quality of finished product. Engineering for Rural Development. Proceedings, 131–136. doi: https://doi.org/10.22616/erdev2018.17.n158
  12. Izmel'chenie zerna i komponentov kombikormov. Agrovestnik. Available at: https://agrovesti.net/lib/tech/fodder-production-tech/izmelchenie-zerna-i-komponentov-kombikormov.html
  13. Mishurov, N. P. (2012). Tehnologii i oborudovanie dlya proizvodstva kombikormov v hozyaystvah. Moscow: FGBNU «Rosinformagroteh», 204.
  14. Agregat kormodrobil'niy AKR-1. Remmash. Available at: http://www.glazovmash.ru/product/drobilka-akr-1
  15. Drobilka KD-2A. Slobodskoy mashinostroitel'niy zavod. Available at: https://smsz.ru/products/g_kombikorm/kd2a/
  16. Molotkovaya drobilka RVO. NEUERO Farm - und Fördertechnik GmbH. Available at: http://www.neuero-farm.company/proizvodstvo-kombikormov/drobilki
  17. Glebov, L. A., Demskiy, A. B., Veden'ev, V. F., Yablokov, A. E. (2010). Tehnologicheskoe oborudovanie i potochnye linii predpriyatiy po pererabotke zerna. Moscow: DeLi print, 696.
  18. Drobilka KU-203. Slobodskoy mashinostroitel'nyy zavod. Available at: https://smsz.ru/products/g_kombikorm/ku203/
  19. Drobilka zerna DPM-18,5. AgroPostavka. Available at: https://ap-nn.com/drobilka-zerna-dpm-18-5/
  20. Mel'nitsa dlya zerna (drobilka) vsasyvayushchaya H-119/3 18,5 kVt. DOZAmech. Available at: https://dozameh.com/products/drobilki/zernodrobilka-vsasyvayushchaya-h-1193.html
  21. Lapshin, V. B., Abalihin, A. M., Kuvshinov, V. V., Terent'ev, V. V., Bogdanov, V. S. (2010). Pat. No. 107488 RU. Izmel'chitel' furazhnogo zerna. declareted: 31.08.2010; published: 20.08.2011.
  22. Lapshin, V. B., Abalihin, A. M., Kolobov, M. Yu., Bobrova, N. V., Subbotin, K. V. (2008). Pat. No. 74581 RU. Izmel'chitel' furazhnogo zerna. declareted: 04.02.2008; published: 10.07.2008.
  23. Abalihin, A. M., Krupin, A. V., Zhukova, T. A., Dolgova, E. A. (2018). Pat. No. 189365 RU. Tsentrobezhniy izmel'chitel' furazhnogo zerna. declareted: 14.05.2018; published: 21.05.2019.
  24. Wondra, K. J. (1993). Effects of particle size, mill type, and diet form on performance of finishing pigs and lactating sows. Manhattan.
  25. Ivanov, Yu. A., Syrovatka, V. I., Sergeev, N. S., Zapevalov, M. V. (2009). Tsentrobezhno-rotornoe izmel'chenie furazhnogo zerna i rapsa. Tehnika i oborudovanie dlya sela, 2, 20–21.
  26. Makartsev, N. G. (1999). Kormlenie sel'skohozyaystvennyh zhivotnyh. Kaluga: GUP «Oblizdat», 646.
  27. Bulatov, S. Y., Nechaev, V. N., Shamin, A. E. (2020). Results of evaluation of the quality of grain crushing by the DZM-6 crusher. Bulletin NGIEI, 3 (106), 21–36. doi: http://doi.org/10.24411/2227-9407-2020-10022
  28. Abalikhin, A. M., Volkhonov, M. S., Krupin, A. V., Kolesnikova, A. I. (2020). Theoretical study of the effect of geometrical parameters and location of rotor impact elements of an impact-centrifugal grinder on speed and angles of crushed particles flight. Agrarian journal of the Upper Volga Region, 2 (31), 62–70.
  29. Shagdyrov, I., Baldanov, M., Petinova, N., Shagdyrov, B. (2015). Analysis contructive-regime and technological parameters of a multistage forage grain grinder based on a degree of grinding. Bulletin of the Buryat State Agricultural Academy named after V.R. Filippov, 3 (40).

Downloads

Published

2020-10-31

How to Cite

Volkhonov, M., Abalikhin, A., Krupin, A., & Maximov, I. (2020). Studying the operational efficiency of the centrifugal-impact feed grain crusher of the new design. Eastern-European Journal of Enterprise Technologies, 5(1 (107), 44–51. https://doi.org/10.15587/1729-4061.2020.212994

Issue

Section

Engineering technological systems