Виявлення механізму втрати стійкості двофракційної зернистої течії в обертовому барабані

Автор(и)

  • Катерина Юріївна Дейнека Національний університет водного господарства та природокористування, Україна https://orcid.org/0000-0001-7376-6734
  • Юрій Васильович Науменко Національний університет водного господарства та природокористування, Україна https://orcid.org/0000-0003-3658-3087

DOI:

https://doi.org/10.15587/1729-4061.2022.263097

Ключові слова:

обертовий барабан, двофракційне зернисте заповнення, стійкість руху, автоколивання, біфуркаційна швидкість, дилатансія

Анотація

З’ясовано якісний характер та встановлено кількісні параметри прояву нестійкості руху двофракційного зернистого заповнення обертового барабана.

Виявлено фактори нестійкості руху і визначальні параметри коливальної системи та оцінено їх вплив на самозбудження автоколивань пульсаційного типу.

Встановлено два неперервних та один періодичний усталений режими руху заповнення. Виявлено встановлення періодичних автоколивань внаслідок розвитку нестійкості при переході неперервного циркуляційного режиму руху у режим пристінкового шару. Прийнято дилатансію заповнення та демпфуючу дію частинок дрібної фракції на імпульсну взаємодію частинок крупної фракції як фактори нестійкості руху.

Виявилось, що головним визначальним параметром коливальної системи є величина швидкості обертання барабана, яка зумовлює зміну дилатансії. Посилення нестійкості реалізується у зниженні біфуркаційних значень швидкості обертання та дилатансії. Натомість іншими визначальними параметрами є вміст дрібної фракції в заповненні κff та ступінь наповнення камери κlf, зростання яких посилює автоколивальну нестійкість.

Особливостями коливальної системи є релаксаційний тип, розривний характер автоколивань та жорсткий режим самозбудження при виникненні бістабільності. Розривний характер та коливальний гістерезис посилюються зі зниженням κff та κlf.

Встановлено граничні значення динамічних параметрів руху, що відповідають умовам самозбудження автоколивань за відсутності та при наявності дрібної фракції: 0.96–1.11 та 0.218–0.382 для біфуркаційного значення відносної швидкості обертання, 0.745–0.855 та 0.24–0.322 для біфуркаційного значення дилатансії.

Встановлені ефекти дозволяють обґрунтувати параметри автоколивного процесу переробки полізернистих матеріалів в машинах барабанного типу

Біографії авторів

Катерина Юріївна Дейнека, Національний університет водного господарства та природокористування

Кандидат технічних наук, викладач вищої категорії

Рівненський технічний фаховий коледж

Юрій Васильович Науменко, Національний університет водного господарства та природокористування

Доктор технічних наук, доцент

Кафедра будівельних, дорожніх, меліоративних, сільськогосподарських машин і обладнання

Посилання

  1. Bouchard, J., LeBlanc, G., Levesque, M., Radziszewski, P., Georges-Filteau, D. (2019). Breaking down energy consumption in industrial grinding mills. CIM Journal, 10 (4), 157–164. doi: https://doi.org/10.15834/cimj.2019.18
  2. Góralczyk, M., Krot, P., Zimroz, R., Ogonowski, S. (2020). Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics – An Overview. Energies, 13 (24), 6735. doi: https://doi.org/10.3390/en13246735
  3. Both, H.-U. (1996). Mahlkörperbewegungen in der Kugelmühle. IWF (Göttingen). doi: https://doi.org/10.3203/IWF/C-921
  4. Deineka, K., Naumenko, Y. (2019). Revealing the effect of decreased energy intensity of grinding in a tumbling mill during self-excitation of auto-oscillations of the intrachamber fill. Eastern-European Journal of Enterprise Technologies, 1 (1), 6–15. doi: https://doi.org/10.15587/1729-4061.2019.155461
  5. Deineka, K., Naumenko, Y. (2019). Establishing the effect of a decrease in power intensity of self-oscillating grinding in a tumbling mill with a reduction in an intrachamber fill. Eastern-European Journal of Enterprise Technologies, 6 (7 (102)), 43–52. doi: https://doi.org/10.15587/1729-4061.2019.183291
  6. Deineka, K., Naumenko, Y. (2020). Establishing the effect of decreased power intensity of self-oscillatory grinding in a tumbling mill when the crushed material content in the intra-chamber fill is reduced. Eastern-European Journal of Enterprise Technologies, 4 (1 (106)), 39–48. doi: https://doi.org/10.15587/1729-4061.2020.209050
  7. Deineka, K., Naumenko, Y. (2021). Establishing the effect of a simultaneous reduction in the filling load inside a chamber and in the content of the crushed material on the energy intensity of self-oscillatory grinding in a tumbling mill. Eastern-European Journal of Enterprise Technologies, 1 (1 (109)), 77–87. doi: https://doi.org/10.15587/1729-4061.2021.224948
  8. Naumenko, Yu. V., Deineka, K. Yu. (2014). Teoretychni osnovy robochykh protsesiv mashyn barabannoho typu. Rivne: NUVHP, 531.
  9. Naumenko, Yu. V. (1999). The antitorque moment in a partially filled horizontal cylinder. Theoretical Foundations of Chemical Engineering, 33 (1), 91–95.
  10. Naumenko, Yu. V. (2000). Opredelenie ratsional'nykh skorostey vrascheniya gorizontal'nykh barabannykh mashin. Metallurgicheskaya i gornorudnaya promyshlennost', 5, 89–92.
  11. Seiden, G., Thomas, P. J. (2011). Complexity, segregation, and pattern formation in rotating-drum flows. Reviews of Modern Physics, 83 (4), 1323–1365. doi: https://doi.org/10.1103/revmodphys.83.1323
  12. He, S. Y., Gan, J. Q., Pinson, D., Zhou, Z. Y. (2019). Particle shape-induced radial segregation of binary mixtures in a rotating drum. Powder Technology, 341, 157–166. doi: https://doi.org/10.1016/j.powtec.2018.06.005
  13. He, S. Y., Gan, J. Q., Pinson, D., Yu, A. B., Zhou, Z. Y. (2021). Particle shape-induced axial segregation of binary mixtures of spheres and ellipsoids in a rotating drum. Chemical Engineering Science, 235, 116491. doi: https://doi.org/10.1016/j.ces.2021.116491
  14. Gray, J. M. N. T. (2018). Particle Segregation in Dense Granular Flows. Annual Review of Fluid Mechanics, 50 (1), 407–433. doi: https://doi.org/10.1146/annurev-fluid-122316-045201
  15. Inagaki, S., Ebata, H., Yoshikawa, K. (2015). Steadily oscillating axial bands of binary granules in a nearly filled coaxial cylinder. Physical Review E, 91 (1). doi: https://doi.org/10.1103/physreve.91.010201
  16. Marteau, E., Andrade, J. E. (2017). A model for decoding the life cycle of granular avalanches in a rotating drum. Acta Geotechnica, 13 (3), 549–555. doi: https://doi.org/10.1007/s11440-017-0609-2
  17. Preud’homme, N., Opsomer, E., Vandewalle, N., Lumay, G. (2021). Effect of grain shape on the dynamics of granular materials in 2D rotating drum. EPJ Web of Conferences, 249, 06002. doi: https://doi.org/10.1051/epjconf/202124906002
  18. Chen, Q., Yang, H., Li, R., Xiu, W. Z., Han, R., Sun, Q. C., Zivkovic, V. (2020). Compaction and dilatancy of irregular particles avalanche flow in rotating drum operated in slumping regime. Powder Technology, 364, 1039–1048. doi: https://doi.org/10.1016/j.powtec.2019.09.047
  19. Clavaud, C., Bérut, A., Metzger, B., Forterre, Y. (2017). Revealing the frictional transition in shear-thickening suspensions. Proceedings of the National Academy of Sciences, 114 (20), 5147–5152. doi: https://doi.org/10.1073/pnas.1703926114
  20. Swartz, A. G., Kalmbach, J. B., Olson, J., Zieve, R. J. (2009). Segregation and stability of a binary granular heap. Granular Matter, 11 (3), 185–191. doi: https://doi.org/10.1007/s10035-009-0135-5
  21. Yin, Z., Peng, Y., Zhu, Z., Yu, Z., Li, T. (2017). Impact Load Behavior between Different Charge and Lifter in a Laboratory-Scale Mill. Materials, 10 (8), 882. doi: https://doi.org/10.3390/ma10080882
  22. Huang, X., Bec, S., Colombani, J. (2014). Influence of fine particles on the stability of a humid granular pile. Physical Review E, 90 (5). doi: https://doi.org/10.1103/physreve.90.052201
  23. Huang, X., Bec, S., Colombani, J. (2015). Ambivalent role of fine particles on the stability of a humid granular pile in a rotating drum. Powder Technology, 279, 254–261. doi: https://doi.org/10.1016/j.powtec.2015.04.007
  24. Liao, C.-C., Ou, S.-F., Chen, S.-L., Chen, Y.-R. (2020). Influences of fine powder on dynamic properties and density segregation in a rotating drum. Advanced Powder Technology, 31 (4), 1702–1707. doi: https://doi.org/10.1016/j.apt.2020.02.006
  25. Chung, Y.-C., Liao, C.-C., Zhuang, Z.-H. (2021). Experimental investigations for the effect of fine powders on size-induced segregation in binary granular mixtures. Powder Technology, 387, 270–276. doi: https://doi.org/10.1016/j.powtec.2021.04.034
  26. Govender, I. (2016). Granular flows in rotating drums: A rheological perspective. Minerals Engineering, 92, 168–175. doi: https://doi.org/10.1016/j.mineng.2016.03.021
  27. Midi, G. D. R. (2004). On dense granular flows. The European Physical Journal E, 14 (4), 341–365. doi: https://doi.org/10.1140/epje/i2003-10153-0
  28. Forterre, Y., Pouliquen, O. (2008). Flows of Dense Granular Media. Annual Review of Fluid Mechanics, 40 (1), 1–24. doi: https://doi.org/10.1146/annurev.fluid.40.111406.102142
  29. Chou, S. H., Hsiau, S. S. (2011). Experimental analysis of the dynamic properties of wet granular matter in a rotating drum. Powder Technology, 214 (3), 491–499. doi: https://doi.org/10.1016/j.powtec.2011.09.010
  30. Breu, A. P. J., Kruelle, C. A., Rehberg, I. (2003). Pattern formation in a rotating aqueous suspension. Europhysics Letters (EPL), 62 (4), 491–497. doi: https://doi.org/10.1209/epl/i2003-00379-x
  31. Rajchenbach, J. (1990). Flow in powders: From discrete avalanches to continuous regime. Physical Review Letters, 65 (18), 2221–2224. doi: https://doi.org/10.1103/physrevlett.65.2221
  32. Tegzes, P., Vicsek, T., Schiffer, P. (2002). Avalanche Dynamics in Wet Granular Materials. Physical Review Letters, 89 (9). doi: https://doi.org/10.1103/physrevlett.89.094301
  33. Tegzes, P., Vicsek, T., Schiffer, P. (2003). Development of correlations in the dynamics of wet granular avalanches. Physical Review E, 67 (5). doi: https://doi.org/10.1103/physreve.67.051303
  34. Aranson, I. S., Tsimring, L. S. (2002). Continuum theory of partially fluidized granular flows. Physical Review E, 65 (6). doi: https://doi.org/10.1103/physreve.65.061303
  35. Aranson, I. S., Tsimring, L. S. (2006). Patterns and collective behavior in granular media: Theoretical concepts. Reviews of Modern Physics, 78 (2), 641–692. doi: https://doi.org/10.1103/revmodphys.78.641
  36. Ouyang, H.-W., Huang, L.-H., Cheng, L., Huang, S.-C., Wang, Q., Liu, Z.-M., Zhang, X. (2013). Behavior of hysteretic transition of granular flow regimes in a slow rotating drum. Materials Science and Engineering of Powder Metallurgy, 18 (2), 155–162. Available at: https://www.researchgate.net/publication/286303609_Behavior_of_hysteretic_transition_of_granular_flow_regimes_in_a_slow_rotating_drum
  37. Balmforth, N. J., McElwaine, J. N. (2018). From episodic avalanching to continuous flow in a granular drum. Granular Matter, 20 (3). doi: https://doi.org/10.1007/s10035-018-0822-1
  38. Perrin, H., Clavaud, C., Wyart, M., Metzger, B., Forterre, Y. (2019). Interparticle Friction Leads to Nonmonotonic Flow Curves and Hysteresis in Viscous Suspensions. Physical Review X, 9 (3). doi: https://doi.org/10.1103/physrevx.9.031027
  39. Kasper, J. H., Magnanimo, V., Jarray, A. (2019). Dynamics of discrete wet granular avalanches in a rotary drum. Proceedings of the 8th International Conference on Discrete Element Methods (DEM8). Available at: https://mercurylab.co.uk/dem8/wp-content/uploads/sites/4/2019/07/99.pdf
  40. Kasper, J. H., Magnanimo, V., de Jong, S. D. M., Beek, A., Jarray, A. (2021). Effect of viscosity on the avalanche dynamics and flow transition of wet granular matter. Particuology, 59, 64–75. doi: https://doi.org/10.1016/j.partic.2020.12.001
  41. Santos, D. A., Scatena, R., Duarte, C. R., Barrozo, M. A. S. (2016). Transition phenomenon investigation between different flow regimes in a rotary drum. Brazilian Journal of Chemical Engineering, 33 (3), 491–501. doi: https://doi.org/10.1590/0104-6632.20160333s20150128
  42. Naumenko, Y., Deineka, K., Myronenko, T. (2021). Establishing the conditions for the formation of a near-wall layer of solid granular fill of a rotating drum. Eastern-European Journal of Enterprise Technologies, 5 (1 (113)), 51–61. doi: https://doi.org/10.15587/1729-4061.2021.240194
  43. Zimber, F., Kollmer, J. E., Pöschel, T. (2013). Polydirectional Stability of Granular Matter. Physical Review Letters, 111 (16). doi: https://doi.org/10.1103/physrevlett.111.168003
  44. Wang, Z., Zhang, J. (2015). Fluctuations of particle motion in granular avalanches – from the microscopic to the macroscopic scales. Soft Matter, 11 (27), 5408–5416. doi: https://doi.org/10.1039/c5sm00643k
  45. Wang, Z., Zhang, J. (2015). Spatiotemporal chaotic unjamming and jamming in granular avalanches. Scientific Reports, 5 (1). doi: https://doi.org/10.1038/srep08128
  46. Maghsoodi, H., Luijten, E. (2016). Chaotic dynamics in a slowly rotating drum. Revista Cubana de Fisica, 33 (1), 50–54. Available at: http://revistacubanadefisica.org/index.php/rcf/article/view/24/4
  47. Balista, J. A. F. (2017). Axial segregation of granular mixtures as the rotational stabilization of the radial core. Granular Matter, 19 (2). doi: https://doi.org/10.1007/s10035-017-0721-x
  48. Salinas, V., Quiñinao, C., González, S., Castillo, G. (2021). Triggering avalanches by transverse perturbations in a rotating drum. Scientific Reports, 11 (1). doi: https://doi.org/10.1038/s41598-021-93422-2
  49. Andronov, A. A., Vitt, A. A., Khaykin, S. E. (1981). Teoriya kolebaniy. Moscow: Nauka, 568.
  50. Deineka, K. Yu., Naumenko, Yu. V. (2018). The tumbling mill rotation stability. Scientific Bulletin of National Mining University, 1 (163), 60–68. doi: https://doi.org/10.29202/nvngu/2018-1/10
  51. Deineka, K. Yu. (2008). Stiykist rukhu vnutrishnokamernoho zavantazhennia barabannoho mlyna. Visn. NUVHP. Tekhnichni nauky, 3 (43), 250–257.
  52. Blekhman, I. I. (Ed.) (1979). Kolebaniya nelineynykh mekhanicheskikh sistem: Vibratsii v tekhnike. Vol. 2. Moscow: Mashinostroenie, 351.

##submission.downloads##

Опубліковано

2022-08-31

Як цитувати

Дейнека, К. Ю., & Науменко, Ю. В. (2022). Виявлення механізму втрати стійкості двофракційної зернистої течії в обертовому барабані. Eastern-European Journal of Enterprise Technologies, 4(1 (118), 34–46. https://doi.org/10.15587/1729-4061.2022.263097

Номер

Розділ

Виробничо-технологічні системи