Оцінка складності процесу збирання з використанням коефіцієнтів матеріалу для обробки та установки

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2023.267430

Ключові слова:

збирання, індекс складності, коефіцієнт матеріалу, вибір матеріалу, обробка, установка, кріплення

Анотація

Принципи складності мають велике значення для зниження складності і в той же час для постійного виконання вимог до виробу, процесу та системи. Вирішальним фактором, що впливає на складність збирання, є вибір матеріалу. Матеріал, що використовується для виготовлення виробу, буде тісно пов’язаний з процесом обробки та встановлення. У попередньому дослідженні методи, що використовуються для вибору матеріалів та процесів збирання, були розроблені окремо. У даній роботі ці методи будуть об’єднані в єдине ціле з урахуванням складності кожного процесу. Наукова інформація з цього питання ще не розкрита, тому воно все ще потребує інтенсивного вивчення. Отже, метою дослідження є просування нового способу вимірювання складності збирання деталей шляхом вивчення параметрів вибору матеріалу. Запропонований метод включає використання коефіцієнтів матеріалу при визначенні індексу складності збирання і складається з двох етапів. Наведено чисельні приклади для повної ілюстрації запропонованої конструкції, в якій використовуються три варіанти матеріалів в поршневих виробах для розрахунку індексу складності процесу збирання. Варіанти з невеликим індексом складності ідеальні та полегшують процес збирання.

У дослідженні створена модель коефіцієнта матеріалу для визначення процесу збирання, де кожен компонент має різні значення коефіцієнта. Коефіцієнт матеріалу описує значення характеристик матеріалу, пов’язаних зі способом збирання, а саме з процесом обробки та установки. Вибір матеріалу вимагає чіткого розуміння вимог до збирання для кожного компонента. Відповідними характеристиками матеріалу є щільність, в’язкість руйнування, модуль Юнга, межа пружності, межа міцності на розрив, відносне подовження і твердість. В результаті оцінки індексу складності з використанням методів попередніх досліджень отримано значення 6,02. За допомогою даного методу було отримано 5,777 для варіанту 1 та 5,769 для другого варіанту. Середнє значення складності сумісно з коефіцієнтом матеріалу і часом складання

Біографії авторів

Nelce Dominggas Muskita, Brawijaya University

Doctoral Student in Mechanical Engineering

Department of Mechanical Engineering

Rudy Soenoko, Brawijaya University

Professor in Mechanical Engineering

Department of Mechanical Engineering

Achmad As’ad Sonief, Brawijaya University

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

Moch. Agus Choiron, Brawijaya University

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

Посилання

  1. Chow, W.-M. (2020). Assembly Line Design. CRC Press, 448. doi: https://doi.org/10.1201/9781003066477
  2. Laun, M., Czech, C., Hartmann, U., Terschüren, C., Harth, V., Karamanidis, K., Friemert, D. (2022). The acceptance of smart glasses used as side-by-side instructions for complex assembly tasks is highly dependent on the device model. International Journal of Industrial Ergonomics, 90, 103316. doi: https://doi.org/10.1016/j.ergon.2022.103316
  3. Panhalkar, N., Paul, R., Anand, S. (2014). Optimization of Automobile Assembly Process to Reduce Assembly Time. Computer-Aided Design and Applications, 11, S54–S60. doi: https://doi.org/10.1080/16864360.2014.914410
  4. Falck, A.-C., Örtengren, R., Rosenqvist, M., Söderberg, R. (2016). Proactive assessment of basic complexity in manual assembly: development of a tool to predict and control operator-induced quality errors. International Journal of Production Research, 55 (15), 4248–4260. doi: https://doi.org/10.1080/00207543.2016.1227103
  5. Sudhoff, M., Schüler, P., Herzog, M., Kuhlenkötter, B. (2022). Proving the Applicability of Assembly Complexity Measures for Process Time Prediction of Customer-specific Production. Procedia CIRP, 107, 381–386. doi: https://doi.org/10.1016/j.procir.2022.04.062
  6. Falck, A.-C., Tarrar, M., Mattsson, S., Andersson, L., Rosenqvist, M., Söderberg, R. (2017). Assessment of manual assembly complexity: a theoretical and empirical comparison of two methods. International Journal of Production Research, 55 (24), 7237–7250. doi: https://doi.org/10.1080/00207543.2017.1330571
  7. ElMaraghy, W., ElMaraghy, H., Tomiyama, T., Monostori, L. (2012). Complexity in engineering design and manufacturing. CIRP Annals, 61 (2), 793–814. doi: https://doi.org/10.1016/j.cirp.2012.05.001
  8. Wang, K., Xie, G., Xiang, J., Li, T., Peng, Y., Wang, J., Zhang, H. (2022). Materials selection of 3D printed polyamide-based composites at different strain rates: A case study of automobile front bumpers. Journal of Manufacturing Processes, 84, 1449–1462. doi: https://doi.org/10.1016/j.jmapro.2022.11.024
  9. Dammann, M., Schüppstuhl, T. (2018). Automated selection and assembly of sets of blades for jet engine compressors and turbines. Procedia Manufacturing, 16, 53–60. doi: https://doi.org/10.1016/j.promfg.2018.10.159
  10. Petunina, I., Zrazhevskiy, A., Kuzmin, O. (2022). Manufacturing Technology of complex non-assembly mechanisms with movable parts in Civil Engineering. CIRP Journal of Manufacturing Science and Technology, 37, 227–232. doi: https://doi.org/10.1016/j.cirpj.2022.01.016
  11. Zhang, J., Wang, S., He, W., Li, J., Wu, S., Huang, J. et al. (2022). Augmented reality material management system based on post-processing of aero-engine blade code recognition. Journal of Manufacturing Systems, 65, 564–578. doi: https://doi.org/10.1016/j.jmsy.2022.10.006
  12. Ukala, A. N., Sunmola, F. T. (2020). A Rule-Based Approach for Product Assembly Complexity Review in the Context of Virtual Engineering. Procedia Manufacturing, 51, 557–564. doi: https://doi.org/10.1016/j.promfg.2020.10.078
  13. Facchini, F., Cavallo, D., Mummolo, G. (2022). A Model to Estimate Operators’ Performance in Accomplishing Assembly Tasks. Industrial Engineering and Operations Management, 193–205. doi: https://doi.org/10.1007/978-3-031-14763-0_16
  14. Li-li, L., Kun, C., Jian-min, G., Jun-kong, L., Zhi-yong, G., Hong-wei, D. (2022). Research on optimizing-assembly and optimizing-adjustment technologies of aero-engine fan rotor blades. Advanced Engineering Informatics, 51, 101506. doi: https://doi.org/10.1016/j.aei.2021.101506
  15. Vučetić, N., Jovičić, G., Krstić, B., Živković, M., Milovanović, V., Kačmarčik, J., Antunović, R. (2020). Research of an aircraft engine cylinder assembly integrity assessment – Thermomechanical FEM analysis. Engineering Failure Analysis, 111, 104453. doi: https://doi.org/10.1016/j.engfailanal.2020.104453
  16. Wang, H., Gu, T., Jin, M., Zhao, R., Wang, G. (2018). The complexity measurement and evolution analysis of supply chain network under disruption risks. Chaos, Solitons & Fractals, 116, 72–78. doi: https://doi.org/10.1016/j.chaos.2018.09.018
  17. Grogan, P. T. (2021). Perception of complexity in engineering design. Systems Engineering, 24 (4), 221–233. doi: https://doi.org/10.1002/sys.21574
  18. Alkan, B., Vera, D. A., Ahmad, M., Ahmad, B., Harrison, R. (2018). Complexity in manufacturing systems and its measures: a literature review. European J. of Industrial Engineering, 12 (1), 116. doi: https://doi.org/10.1504/ejie.2018.089883
  19. Domoto, Y., Fujita, M. (2022). Self-assembly of nanostructures with high complexity based on metal⋯unsaturated-bond coordination. Coordination Chemistry Reviews, 466, 214605. doi: https://doi.org/10.1016/j.ccr.2022.214605
  20. Mallick, P. K. (Ed.) (2021). Materials, Design and Manufacturing for Lightweight Vehicles. Elsevier. doi: https://doi.org/10.1016/C2018-0-04153-5
  21. Loor, R. B. S., Gómez, J. M., Hoyos, J. C. R., Cedeño, E. A. Ll. (2020). Selection of materials by multi-criteria methods applied to the side of a self-supporting structure for light vehicles. International Journal of Mathematics in Operational Research, 16 (2), 139. doi: https://doi.org/10.1504/ijmor.2020.105844
  22. Ghavami, S. M. (2019). Multi-criteria spatial decision support system for identifying strategic roads in disaster situations. International Journal of Critical Infrastructure Protection, 24, 23–36. doi: https://doi.org/10.1016/j.ijcip.2018.10.004
  23. Emovon, I., Oghenenyerovwho, O. S. (2020). Application of MCDM method in material selection for optimal design: A review. Results in Materials, 7, 100115. doi: https://doi.org/10.1016/j.rinma.2020.100115
  24. Rahim, A. A., Musa, S. N., Ramesh, S., Lim, M. K. (2020). A systematic review on material selection methods. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234 (7), 1032–1059. doi: https://doi.org/10.1177/1464420720916765
  25. Athawale, V. M., Chakraborty, S. (2012). Material selection using multi-criteria decision-making methods: a comparative study. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 226 (4), 266–285. doi: https://doi.org/10.1177/1464420712448979
  26. Ashby, M. F., Shercliff, H., Cebon, D. (2019). Materials: Engineering, Science, Processing and Design. Elsevier Butterworth-Heinemann, 806.
  27. Rahim, A. A., Musa, S. N., Ramesh, S., Lim, M. K. (2021). Development of a fuzzy-TOPSIS multi-criteria decision-making model for material selection with the integration of safety, health and environment risk assessment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235 (7), 1532–1550. doi: https://doi.org/10.1177/1464420721994269
  28. Maleque, M. A., Salit, M. S. (2013). Materials Selection and Design. Springer, 120. doi: https://doi.org/10.1007/978-981-4560-38-2
  29. Tian, G., Zhang, H., Feng, Y., Wang, D., Peng, Y., Jia, H. (2018). Green decoration materials selection under interior environment characteristics: A grey-correlation based hybrid MCDM method. Renewable and Sustainable Energy Reviews, 81, 682–692. doi: https://doi.org/10.1016/j.rser.2017.08.050
  30. Chatterjee, P., Chakraborty, S. (2012). Material selection using preferential ranking methods. Materials & Design, 35, 384–393. doi: https://doi.org/10.1016/j.matdes.2011.09.027
  31. Samy, S. N., ElMaraghy, H. A. (2012). Complexity mapping of the product and assembly system. Assembly Automation, 32 (2), 135–151. doi: https://doi.org/10.1108/01445151211212299
  32. Ashby, M. F. (2016). Materials Selection in Mechanical Design. Elsevier Butterworth-Heinemann.
Оцінка складності процесу збирання з використанням коефіцієнтів матеріалу для обробки та установки

##submission.downloads##

Опубліковано

2023-02-25

Як цитувати

Muskita, N. D., Soenoko, R., Sonief, A. A., & Choiron, M. A. (2023). Оцінка складності процесу збирання з використанням коефіцієнтів матеріалу для обробки та установки . Eastern-European Journal of Enterprise Technologies, 1(1 (121), 67–78. https://doi.org/10.15587/1729-4061.2023.267430

Номер

Розділ

Виробничо-технологічні системи