Домінуюче виявлення та прогнозування катастроф у прибережних районах з використанням системи нейромережі для оптимізації управління катастрофами в прибережних районах

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2025.321966

Ключові слова:

глибока нейронна мережа, прогнозування катастроф, прибережна зона, пом’якшення наслідків, розумна система виявлення, картографування геоінформаційної системи, система раннього попередження

Анотація

Об'єктом дослідження є виявлення та прогнозування домінантних катастроф у прибережних районах. Проблема, яку вирішують, полягає у відсутності точних і ефективних систем раннього попередження про ці катастрофи, які можуть призвести до значних збитків і економічних втрат. Щоб вирішити цю проблему, в цьому дослідженні розроблено інноваційну програму та веб-сайт, призначені для прогнозування найбільш домінуючих катастроф у прибережних районах. Ця система використовує обробку даних у режимі реального часу для надання ранніх попереджень та оцінки ризиків, допомагаючи громадам і групам реагування на надзвичайні ситуації підготуватися до потенційних загроз. Результати тестування показують, що 89% передбачень системи є ефективними в боротьбі зі стихійними лихами. Методологія дослідження включає спостереження, збір даних, попередню обробку набору даних, аналіз і розробку системи інтелектуального виявлення з використанням методів картографування та кластеризації на основі геоінформаційної системи (GIS). Результати пояснюються за допомогою методу гібридної глибокої нейронної мережі, який аналізує різні фактори навколишнього середовища, включаючи температуру, швидкість вітру, висоту хвилі, погодні умови та коливання рівня моря. Додаткові функції, такі як щоденні прогнози погоди, покращують прогнозні можливості системи. Ця інтелектуальна система боротьби зі стихійними лихами на базі нейронної мережі забезпечує ефективне прогнозування та пом’якшення наслідків стихійних лих. Система призначена для застосування в прибережних районах з обмеженими технологіями, тим самим покращуючи готовність до катастроф. Крім того, програма дозволяє урядам більш ефективно відстежувати та реагувати на катастрофи. Завдяки інтеграції рішень на основі штучного інтелекту це дослідження робить значний внесок у боротьбу зі стихійними лихами, пропонуючи інноваційні стратегії для мінімізації ризиків і посилення зусиль реагування на надзвичайні ситуації

Біографії авторів

Henny Febriana Harumy, Universitas Sumatera Utara

Lecturer

Department of Computer Science

Dewi Sartika Ginting, Universitas Sumatera Utara

Lecturer

Department of Computer Science

Fuzy Yustika Manik, Universitas Sumatera Utara

Lecturer

Department of Computer Science

Mesra Betty Yel, Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika

Lecturer

Department of Computer Science

Посилання

  1. Tanzil Furqon, M., Muflikhah, L. (2016). Clustering The Potential Risk Of Tsunami Using Density-Based Spatial Clustering Of Application With Noise (Dbscan). Journal of Enviromental Engineering and Sustainable Technology, 3 (1), 1–8. https://doi.org/10.21776/ub.jeest.2016.003.01.1
  2. Li, Y., Goda, K. (2023). Risk-based tsunami early warning using random forest. Computers & Geosciences, 179, 105423. https://doi.org/10.1016/j.cageo.2023.105423
  3. Moya, L., Muhari, A., Adriano, B., Koshimura, S., Mas, E., Marval-Perez, L. R., Yokoya, N. (2020). Detecting urban changes using phase correlation and ℓ1-based sparse model for early disaster response: A case study of the 2018 Sulawesi Indonesia earthquake-tsunami. Remote Sensing of Environment, 242, 111743. https://doi.org/10.1016/j.rse.2020.111743
  4. Wang, Y., Imai, K., Miyashita, T., Ariyoshi, K., Takahashi, N., Satake, K. (2023). Coastal tsunami prediction in Tohoku region, Japan, based on S-net observations using artificial neural network. Earth, Planets and Space, 75 (1). https://doi.org/10.1186/s40623-023-01912-6
  5. Xu, H., Wu, H. (2023). Accurate tsunami wave prediction using long short-term memory based neural networks. Ocean Modelling, 186, 102259. https://doi.org/10.1016/j.ocemod.2023.102259
  6. Lin, A., Wu, H., Liang, G., Cardenas-Tristan, A., Wu, X., Zhao, C., Li, D. (2020). A big data-driven dynamic estimation model of relief supplies demand in urban flood disaster. International Journal of Disaster Risk Reduction, 49, 101682. https://doi.org/10.1016/j.ijdrr.2020.101682
  7. Zhai, W. (2022). A multi-level analytic framework for disaster situational awareness using Twitter data. Computational Urban Science, 2 (1). https://doi.org/10.1007/s43762-022-00052-z
  8. Jain, N., Virmani, D., Abraham, A., Salas-Morera, L., Garcia-Hernandez, L. (2020). Did They Sense it Coming? A Pipelined Approach for Tsunami Prediction Based on Aquatic Behavior Using Ensemble Clustering and Fuzzy Rule-Based Classification. IEEE Access, 8, 166922–166939. https://doi.org/10.1109/access.2020.3022865
  9. Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M. et al. (2021). Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.628772
  10. Jia, J., Ye, W. (2023). Deep Learning for Earthquake Disaster Assessment: Objects, Data, Models, Stages, Challenges, and Opportunities. Remote Sensing, 15 (16), 4098. https://doi.org/10.3390/rs15164098
  11. Virtriana, R., Harto, A. B., Atmaja, F. W., Meilano, I., Fauzan, K. N., Anggraini, T. S. et al. (2022). Machine learning remote sensing using the random forest classifier to detect the building damage caused by the Anak Krakatau Volcano tsunami. Geomatics, Natural Hazards and Risk, 14 (1), 28–51. https://doi.org/10.1080/19475705.2022.2147455
  12. Cheng, A.-C., Suppasri, A., Pakoksung, K., Imamura, F. (2023). Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006. Natural Hazards and Earth System Sciences, 23 (2), 447–479. https://doi.org/10.5194/nhess-23-447-2023
  13. Khan, A., Gupta, S., Gupta, S. K. (2020). Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International Journal of Disaster Risk Reduction, 47, 101642. https://doi.org/10.1016/j.ijdrr.2020.101642
  14. Isnaeni, A. Y., Prasetyo, S. Y. J. (2022). Klasifikasi Wilayah Potensi Risiko Kerusakan Lahan Akibat Bencana Tsunami Menggunakan Machine Learning. Jurnal Teknik Informatika Dan Sistem Informasi, 8 (1). https://doi.org/10.28932/jutisi.v8i1.4056
  15. Toha, H. R., Hashim, J. H., Sahani, M., Shamsir, M. S. (2014). Spatial occurrence of dengue fever and its relationship with land use in Selangor, Malaysia. BMC Public Health, 14 (S1). https://doi.org/10.1186/1471-2458-14-s1-p16
  16. Harumy, T. H. F., Yustika Manik, F., Altaha. (2021). Optimization Classification of Diseases Which is Dominant Suffered by Coastal Areas Using Neural Network. 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), 136–141. https://doi.org/10.1109/databia53375.2021.9650223
  17. Hidayat, M. A., Husni, N. L., Damsi, F. (2022). Pendeteksi Banjir Dengan Image Processing Berbasis Convolutional Neural Network (CNN) pada Kamera Pengawas. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2 (2), 10–18. https://doi.org/10.57152/malcom.v2i2.382
  18. Isdianto, A., Asyari, I. M., Haykal, M. F., Adibah, F., Irsyad, M. J., Supriyadi, S. (2020). Analisis Perubahan Garis Pantai Dalam Mendukung Ketahanan Ekosistem Pesisir. Jukung (Jurnal Teknik Lingkungan), 6 (2). https://doi.org/10.20527/jukung.v6i2.9260
  19. Sadollah, A., Eskandar, H., Lee, H. M., Yoo, D. G., Kim, J. H. (2016). Water cycle algorithm: A detailed standard code. SoftwareX, 5, 37–43. https://doi.org/10.1016/j.softx.2016.03.001
  20. Henríquez, P. A., Ruz, G. A. (2018). A non-iterative method for pruning hidden neurons in neural networks with random weights. Applied Soft Computing, 70, 1109–1121. https://doi.org/10.1016/j.asoc.2018.03.013
  21. Balamurugan, P., Amudha, T., Satheeshkumar, J., Somam, M. (2021). Optimizing Neural Network Parameters For Effective Classification of Benign and Malicious Websites. Journal of Physics: Conference Series, 1998 (1), 012015. https://doi.org/10.1088/1742-6596/1998/1/012015
  22. Yumanda, E., Pakereng, M. A. I. (2021). Klasifikasi Resiko Kerusakan Lahan Akibat Tsunami Menggunakan Citra Landsat 8 Di Kabupaten Bantul. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8 (3), 1496–1507. https://doi.org/10.35957/jatisi.v8i3.1109
  23. Arsa, D. M. S., Ma’sum, M. A., Rachmadi, M. F., Jatmiko, W. (2017). Optimization of Stacked Unsupervised Extreme Learning Machine to improve classifier performance. 2017 International Workshop on Big Data and Information Security (IWBIS), 63–68. https://doi.org/10.1109/iwbis.2017.8275104
  24. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M. (2012). Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110–111, 151–166. https://doi.org/10.1016/j.compstruc.2012.07.010
  25. Mohammed, A. J., Al-Majidi, S. D., Al-Nussairi, M. Kh., Abbod, M. F., Al-Raweshidy, H. S. (2022). Design of a Load Frequency Controller based on Artificial Neural Network for Single-Area Power System. 2022 57th International Universities Power Engineering Conference (UPEC), 1–5. https://doi.org/10.1109/upec55022.2022.9917853
  26. Poostchi, M., Silamut, K., Maude, R. J., Jaeger, S., Thoma, G. (2018). Image analysis and machine learning for detecting malaria. Translational Research, 194, 36–55. https://doi.org/10.1016/j.trsl.2017.12.004
Домінуюче виявлення та прогнозування катастроф у прибережних районах з використанням системи нейромережі для оптимізації управління катастрофами в прибережних районах

##submission.downloads##

Опубліковано

2025-04-22

Як цитувати

Harumy, H. F., Ginting, D. S., Manik, F. Y., & Yel, M. B. (2025). Домінуюче виявлення та прогнозування катастроф у прибережних районах з використанням системи нейромережі для оптимізації управління катастрофами в прибережних районах. Eastern-European Journal of Enterprise Technologies, 2(2 (134), 6–16. https://doi.org/10.15587/1729-4061.2025.321966