Визначення впливу Metaperceptron на оптимізацію нейронних мереж: порівняльне дослідження градієнтного спуску та метаевристичного підходів

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2025.326955

Ключові слова:

Metaperceptron, нейронні мережі, градієнтний спуск, метаевристичні алгоритми, оптимізація

Анотація

В цій роботі досліджено застосування фреймворку Metaperceptron як адаптивного механізму оптимізації для навчання нейронних мереж для діагностики синдрому полікістозних яєчників (СПКЯ). Дослідження розглядає постійні проблеми традиційних методів оптимізації, такі як повільна конвергенція, захоплення локальних мінімумів та чутливість до гіперпараметрів, які перешкоджають ефективності та можливостям узагальнення штучних нейронних мереж. Інтегруючи Metaperceptron як з градієнтним спуском (ГС), так і з генетичним алгоритмом (ГА), ця робота демонструє значне покращення швидкості конвергенції та точності діагностики. Зокрема, покращений Metaperceptron ГС скоротив час конвергенції майже на 40%, зберігаючи при цьому високу точність (0,8950 для одношарової нейронної мережі та 0,9100 для багатошарової нейронної мережі). Ці результати були досягнуті завдяки динамічному регулюванню швидкості навчання та метарівневому контролю над стратегіями пошуку, що забезпечує кращий баланс між дослідженням та використанням під час навчання. Результати пояснюються здатністю фреймворку адаптивно реагувати на градієнтні ландшафти та характеристики набору даних, пропонуючи більш стабільний та ефективний процес оптимізації. Практична реалізація запропонованого методу можлива за умов, коли забезпечено якість та репрезентативність даних, зокрема в медичній діагностиці та інших областях, що включають незбалансовані або зашумлені набори даних

Біографії авторів

Darwin Darwin, Universitas Sumatera Utara; Universitas Mikroskil

Doctoral Student, Lecturer

Department of Computer Science

Tengku Henny Febriana Harumy, Universitas Sumatera Utara

Lecturer

Department of Computer Science

Syahril Efendi, Universitas Sumatera Utara

Lecturer

Department of Computer Science

Carles Juliandy, Universitas Mikroskil

Lecturer

Department of Information Technology

Binarwan Halim, Universitas Sumatera Utara

Lecturer

Department of Obstetrics and Gynecology

Посилання

  1. Dastres, R., Soori, M. (2021). Artificial Neural Network Systems. International Journal of Imaging and Robotics (IJIR), 21 (2), 13–25.
  2. Montesinos López, O. A., Montesinos López, A., Crossa, J. (2022). Fundamentals of Artificial Neural Networks and Deep Learning. Multivariate Statistical Machine Learning Methods for Genomic Prediction, 379–425. https://doi.org/10.1007/978-3-030-89010-0_10
  3. Luchia, N. T., Tasia, E., Ramadhani, I., Rahmadeyan, A., Zahra, R. (2024). Performance Comparison Between Artificial Neural Network, Recurrent Neural Network and Long Short-Term Memory for Prediction of Extreme Climate Change. Public Research Journal of Engineering, Data Technology and Computer Science, 1 (2), 62–70. https://doi.org/10.57152/predatecs.v1i2.864
  4. Harumy, T. H. F., Zarlis, M., Effendi, S., Lidya, M. S. (2021). Prediction Using A Neural Network Algorithm Approach (A Review). 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), 325–330. https://doi.org/10.1109/icsecs52883.2021.00066
  5. You, X., Wu, X. (2021). Exponentially Many Local Minima in Quantum Neural Networks. arXiv. https://doi.org/10.48550/arXiv.2110.02479
  6. Friedrich, L., Maziero, J. (2022). Avoiding barren plateaus with classical deep neural networks. Physical Review A, 106 (4). https://doi.org/10.1103/physreva.106.042433
  7. Santos, C. F. G. D., Papa, J. P. (2022). Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks. ACM Computing Surveys, 54 (10s), 1–25. https://doi.org/10.1145/3510413
  8. Gaspar, A., Oliva, D., Cuevas, E., Zaldívar, D., Pérez, M., Pajares, G. (2021). Hyperparameter Optimization in a Convolutional Neural Network Using Metaheuristic Algorithms. Metaheuristics in Machine Learning: Theory and Applications, 37–59. https://doi.org/10.1007/978-3-030-70542-8_2
  9. Van Thieu, N., Nguyen, N. H., Sherif, M., El-Shafie, A., Ahmed, A. N. (2024). Integrated metaheuristic algorithms with extreme learning machine models for river streamflow prediction. Scientific Reports, 14 (1). https://doi.org/10.1038/s41598-024-63908-w
  10. Harumy, T., Ginting, D. S. Br. (2021). Neural Network Enhancement Forecast of Dengue Fever Outbreaks in Coastal Region. Journal of Physics: Conference Series, 1898 (1), 012027. https://doi.org/10.1088/1742-6596/1898/1/012027
  11. Cong, S., Zhou, Y. (2022). A review of convolutional neural network architectures and their optimizations. Artificial Intelligence Review, 56 (3), 1905–1969. https://doi.org/10.1007/s10462-022-10213-5
  12. Abdolrasol, M. G. M., Hussain, S. M. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R. et al. (2021). Artificial Neural Networks Based Optimization Techniques: A Review. Electronics, 10 (21), 2689. https://doi.org/10.3390/electronics10212689
  13. Abd Elaziz, M., Dahou, A., Abualigah, L., Yu, L., Alshinwan, M., Khasawneh, A. M., Lu, S. (2021). Advanced metaheuristic optimization techniques in applications of deep neural networks: a review. Neural Computing and Applications, 33 (21), 14079–14099. https://doi.org/10.1007/s00521-021-05960-5
  14. Reyad, M., Sarhan, A. M., Arafa, M. (2023). A modified Adam algorithm for deep neural network optimization. Neural Computing and Applications, 35 (23), 17095–17112. https://doi.org/10.1007/s00521-023-08568-z
  15. Awasthi, P., Das, A., Gollapudi, S. (2021). A Convergence Analysis of Gradient Descent on Graph Neural Networks. Advances in Neural Information Processing Systems 34 (NeurIPS 2021).
  16. Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D. et al. (2022). Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer. arXiv. https://doi.org/10.48550/arXiv.2203.03466
  17. Abdullah, D., Gartsiyanova, K., Mansur qizi, K., Javlievich, E. A., Bulturbayevich, M. B., Zokirova, G., Nordin, M. N. (2023). An artificial neural networks approach and hybrid method with wavelet transform to investigate the quality of Tallo River, Indonesia. Caspian Journal of Environmental Sciences, 21 (3), 647–656.
  18. Damian, A., Lee, J. D., Soltanolkotabi, M., Loh, P.-L., Raginsky, M. (2022). Neural Networks can Learn Representations with Gradient Descent. Proceedings of Thirty Fifth Conference on Learning Theory.
  19. Eker, E., Kayri, M., Ekinci, S., İzci, D. (2023). Comparison of Swarm-based Metaheuristic and Gradient Descent-based Algorithms in Artificial Neural Network Training. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 12 (1), e29969. https://doi.org/10.14201/adcaij.29969
  20. Khan, M. S., Jabeen, F., Ghouzali, S., Rehman, Z., Naz, S., Abdul, W. (2021). Metaheuristic Algorithms in Optimizing Deep Neural Network Model for Software Effort Estimation. IEEE Access, 9, 60309–60327. https://doi.org/10.1109/access.2021.3072380
  21. Thieu, N. V., Mirjalili, S., Garg, H., Hoang, N. T. (2025). MetaPerceptron: A standardized framework for metaheuristic-driven multi-layer perceptron optimization. Computer Standards & Interfaces, 93, 103977. https://doi.org/10.1016/j.csi.2025.103977
  22. Malik, A., Tikhamarine, Y., Souag-Gamane, D., Kisi, O., Pham, Q. B. (2020). Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction. Stochastic Environmental Research and Risk Assessment, 34 (11), 1755–1773. https://doi.org/10.1007/s00477-020-01874-1
  23. Gharoun, H., Momenifar, F., Chen, F., Gandomi, A. H. (2024). Meta-learning Approaches for Few-Shot Learning: A Survey of Recent Advances. ACM Computing Surveys, 56 (12), 1–41. https://doi.org/10.1145/3659943
  24. Bassey, J., Qian, L., Li, X. (2021). A Survey of Complex-Valued Neural Networks. arXiv. https://doi.org/10.48550/arXiv.2101.12249
  25. Sun, S., Gao, H. (2023). Meta-AdaM: A Meta-Learned Adaptive Optimizer with Momentum for Few-Shot Learning. 37th Conference on Neural Information Processing Systems.
  26. Huda, N., Windiarti, I. S. (2024). Reinforcement learning and meta-learning perspectives frameworks for future medical imaging. Bulletin of Social Informatics Theory and Application, 8 (2), 271–279. https://doi.org/10.31763/businta.v8i2.741
  27. Khoramnejad, F., Hossain, E. (2025). Generative AI for the Optimization of Next-Generation Wireless Networks: Basics, State-of-the-Art, and Open Challenges. IEEE Communications Surveys & Tutorials, 1–1. https://doi.org/10.1109/comst.2025.3535554
  28. Kaveh, M., Mesgari, M. S. (2022). Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review. Neural Processing Letters, 55 (4), 4519–4622. https://doi.org/10.1007/s11063-022-11055-6
  29. Maitanmi, O. S., Ogunyolu, O. A., Kuyoro, A. O. (2024). Evaluation of Financial Credit Risk Management Models Based on Gradient Descent and Meta-Heuristic Algorithms. Ingénierie Des Systèmes d Information, 29 (4), 1441–1452. https://doi.org/10.18280/isi.290417
  30. Rohlfs, C. (2025). Generalization in neural networks: A broad survey. Neurocomputing, 611, 128701. https://doi.org/10.1016/j.neucom.2024.128701
  31. Harumy, T. H. F., Ginting, D. S. B., Manik, F. Y. (2024). Innovation using hybrid deep neural network detects sensitive ingredients in food products. Proceedings Of The 6th International Conference On Computing And Applied Informatics 2022, 2987, 020018. https://doi.org/10.1063/5.0200199
  32. Li, T., Yan, Z., Chen, Y., Tan, T. (2025). In-Sensor Multisensory Integrative Perception. https://doi.org/10.2139/ssrn.5128520
  33. Wang, X., Ptitcyn, G., Asadchy, V. S., Díaz-Rubio, A., Mirmoosa, M. S., Fan, S., Tretyakov, S. A. (2020). Nonreciprocity in Bianisotropic Systems with Uniform Time Modulation. Physical Review Letters, 125 (26). https://doi.org/10.1103/physrevlett.125.266102
  34. Harumy, T. H. F., Ginting, D. S. B., Handrizal, Albana, M. F., Jamesie, A. B., Patrecella, R. P. (2024). Analysis of potential hazards at the sea with artificial neural network and accident prevention with SOS smart system innovation. Proceedings Of The 6th International Conference On Computing And Applied Informatics 2022, 2987, 020037. https://doi.org/10.1063/5.0200202
  35. Verma, P., Maan, P., Gautam, R., Arora, T. (2024). Unveiling the Role of Artificial Intelligence (AI) in Polycystic Ovary Syndrome (PCOS) Diagnosis: A Comprehensive Review. Reproductive Sciences, 31 (10), 2901–2915. https://doi.org/10.1007/s43032-024-01615-7
Визначення впливу Metaperceptron на оптимізацію нейронних мереж: порівняльне дослідження градієнтного спуску та метаевристичного підходів

##submission.downloads##

Опубліковано

2025-10-30

Як цитувати

Darwin, D., Harumy, T. H. F., Efendi, S., Juliandy, C., & Halim, B. (2025). Визначення впливу Metaperceptron на оптимізацію нейронних мереж: порівняльне дослідження градієнтного спуску та метаевристичного підходів. Eastern-European Journal of Enterprise Technologies, 5(4 (137), 6–17. https://doi.org/10.15587/1729-4061.2025.326955

Номер

Розділ

Математика та кібернетика - прикладні аспекти