Розробка машинного навчання для оптимізації прогнозування, реалізованого в морфології росту рослин

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2025.331745

Ключові слова:

оптимізація прогнозування, морфологія рослин, машинне навчання, нейронна мережа багатолінійної регресії

Анотація

Об'єктом дослідження є прогнозування та оптимізація росту рослин. Розподіл даних на кожній ітерації в процесі безперервної оптимізації має тенденцію призводити до передчасної збіжності, оскільки оптимальні точки знаходяться на початку ітерації, тому фактичний оптимальний стан не може бути досягнутий. З цієї причини потрібен метод, щоб побачити оптимальні точки на кожній ітерації в процесі безперервної оптимізації. Для прогнозування змінних, що генеруються на кожній ітерації, використовується підхід багатолінійної регресії, а потім вони оптимізуються за допомогою методу нейронної мережі для кожної знайденої оптимальної точки. Це дослідження реалізовано на спостереженні морфології росту рослин чилі із загальною вибіркою зі 100 стебел протягом 100 днів росту. Процес тестування складається з 5 різних експериментальних сценаріїв на основі функції активації, а процес ітерації проводиться на 250, 500 та 1000 епохах. Крім того, з відсотком навчальних даних 70% та тестових даних 30%, результати, отримані за допомогою функції активації ReLU, мають ідеальне значення порівняно з функціями активації Tanh, Softplus, Elu та Sigmoid. Порівняно з методом часових рядів зі значенням MSE 4,62, це значення значно краще, ніж значення 8,6 для часового ряду. Значення RMSE та MAPE 16,36 та 36,53 також є достатніми. Порівняння рівня точності прогнозування результатів безперервної оптимізації, проведеної з використанням функції активації ReLU та tanh, у порівнянні з методом часових рядів, значення з функцією активації ReLU та tanh має відсоткове значення 46,36% та 46,86%, і це значення є хорошим порівняно з використанням методу часових рядів, який становить рівно 67,39%

Біографії авторів

Ertina Sabarita Barus, Universitas Sumatera Utara; Universitas Prima Indonesia

Student Doctor of Computer Science

Department of Computer Science and Information Technology

Lecturer of Information Systems

Department of Science and Technology

Muhammad Zarlis, BINUS University

Lecturer of Information Systems Management - Professor

Department of Computer Science and Data Science

Zulkifli Nasution, North Sumatra University

PhD Lecturer of FP - Professor

Program Studi S3 Ilmu Pertanian

Sutarman Sutarman, North Sumatra University

Lecturer of Mathematics - Doctoral

Department MIPA (Mathematics and Natural Sciences)

Посилання

  1. Stein, O. (2024). Basic Concepts of Global Optimization. In Mathematics Study Resources. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-66240-3
  2. Zhigljavsky, A., Žilinskas, A. (2021). Bayesian and High-Dimensional Global Optimization. In SpringerBriefs in Optimization. Springer International Publishing. https://doi.org/10.1007/978-3-030-64712-4
  3. Marakumbi Prakash, R. (2020). Distributed Load Balancing algorithms for Cloud Computing-A Survey. International Journal of Progressive Research in Science and Engineering, 1 (6). Available at: https://www.ijprse.com/2020/Vol1_Iss6_September20/IJPRSE_V1I6_15.pdf
  4. Feng, L., Gupta, A., Tan, K. C., Ong, Y. S. (2023). Evolutionary Multi-Task Optimization. In Machine Learning: Foundations, Methodologies, and Applications. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5650-8
  5. Cerf, M. (2023). 1.4 Global optimum. Optimization Techniques I, 37–48. https://doi.org/10.1051/978-2-7598-3162-3.c007
  6. Sariyildiz, İ., Köse Ulukök, M. (2023). Sayısal Global Optimum için Çift-Girişim Tabanlı İyileştirme Algoritmasının Yakınsama Analizi. Computer Science. https://doi.org/10.53070/bbd.1346673
  7. Zhang, Y., Zhu, Y., Li, H., Wang, J. (2024). A hybrid optimization algorithm for multi-agent dynamic planning with guaranteed convergence in probability. Neurocomputing, 592, 127764. https://doi.org/10.1016/j.neucom.2024.127764
  8. Huang, C., Wu, D., Zhou, X., Song, Y., Chen, H., Deng, W. (2024). Competitive swarm optimizer with dynamic multi-competitions and convergence accelerator for large-scale optimization problems. Applied Soft Computing, 167, 112252. https://doi.org/10.1016/j.asoc.2024.112252
  9. Hu, R., Wen, S., Zeng, Z., Huang, T. (2017). A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm. Neurocomputing, 221, 24–31. https://doi.org/10.1016/j.neucom.2016.09.027
  10. Summary of Volume 2: Paradigms of Combinatorial Optimization (2014). Applications of Combinatorial Optimization, 415–425. https://doi.org/10.1002/9781119005384.oth3
  11. Kadlec, M., Buhnova, B., Tomsik, J., Herman, J., Druzbikova, K. (2017). Weather forecast based scheduling for demand response optimization in smart grids. 2017 Smart City Symposium Prague (SCSP), 1–6. https://doi.org/10.1109/scsp.2017.7973867
  12. Schupbach, J., Pryor, E., Webster, K., Sheppard, J. (2022). Combining Dynamic Bayesian Networks and Continuous Time Bayesian Networks for Diagnostic and Prognostic Modeling. 2022 IEEE AUTOTESTCON, 1–8. https://doi.org/10.1109/autotestcon47462.2022.9984758
  13. Scutari, M., Denis, J.-B. (2021). The Continuous Case: Gaussian Bayesian Networks. Bayesian Networks, 37–62. https://doi.org/10.1201/9780429347436-2
  14. Luo, X., Yan, R., Wang, S. (2023). Comparison of deterministic and ensemble weather forecasts on ship sailing speed optimization. Transportation Research Part D: Transport and Environment, 121, 103801. https://doi.org/10.1016/j.trd.2023.103801
  15. de Matos Sá, M., Correia da Fonseca, F. X., Amaral, L., Castro, R. (2024). Optimising O&M scheduling in offshore wind farms considering weather forecast uncertainty and wake losses. Ocean Engineering, 301, 117518. https://doi.org/10.1016/j.oceaneng.2024.117518
  16. Keun Kim, M., Cremers, B., Fu, N., Liu, J. (2024). Predictive and correlational analysis of heating energy consumption in four residential apartments with sensitivity analysis using long Short-Term memory and Generalized regression neural network models. Sustainable Energy Technologies and Assessments, 71, 103976. https://doi.org/10.1016/j.seta.2024.103976
  17. Ait Lahoussine Ouali, H., Touili, S., Alami Merrouni, A., Moukhtar, I. (2024). Artificial neural Network-Based LCOH estimation for concentrated solar power plants for industrial process heating applications. Applied Thermal Engineering, 236, 121810. https://doi.org/10.1016/j.applthermaleng.2023.121810
  18. Mizushima, Y., Inoue, H., Morikawa, S., Taira, S. (2023). Optimization of formworks shoring location as a continuous optimization problem. Structures, 56, 104949. https://doi.org/10.1016/j.istruc.2023.104949
  19. Wang, Y., Sun, S., Fathi, G., Eslami, M. (2024). Improving the Method of Short-term Forecasting of Electric Load in Distribution Networks using Wavelet transform combined with Ridgelet Neural Network Optimized by Self-adapted Kho-Kho Optimization Algorithm. Heliyon, 10 (7), e28381. https://doi.org/10.1016/j.heliyon.2024.e28381
  20. Feng, J., Hou, S., Yu, L., Dimov, N., Zheng, P., Wang, C. (2020). Optimization of photovoltaic battery swapping station based on weather/traffic forecasts and speed variable charging. Applied Energy, 264, 114708. https://doi.org/10.1016/j.apenergy.2020.114708
  21. Ni, Y., Liu, W., Du, X., Xiao, R., Chen, G., Wu, Y. (2024). Evolutionary optimization approach based on heuristic information with pseudo-utility for the quadratic assignment problem. Swarm and Evolutionary Computation, 87, 101557. https://doi.org/10.1016/j.swevo.2024.101557
  22. Sun, F., Liu, T., Song, B., Cui, Y., Nagy, Z. K., Findeisen, R. (2024). Multi-objective optimization based nonlinear model predictive control of seeded cooling crystallization process with application to β form L-glutamic acid. Chemical Engineering Science, 299, 120475. https://doi.org/10.1016/j.ces.2024.120475
  23. Cadenas, J. M., Garrido, M. C., Martínez-España, R., Guillén-Navarro, M. A. (2020). Making decisions for frost prediction in agricultural crops in a soft computing framework. Computers and Electronics in Agriculture, 175, 105587. https://doi.org/10.1016/j.compag.2020.105587
  24. Wang, Y., Zhang, Y. (2021). Prediction of runway configurations and airport acceptance rates for multi-airport system using gridded weather forecast. Transportation Research Part C: Emerging Technologies, 125, 103049. https://doi.org/10.1016/j.trc.2021.103049
  25. Barus, E. S., Zarlis, M., Nasution, Z., Sutarman. (2019). Forcasting Plant Growth Using Neural Network Time Series. 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM), 1–4. https://doi.org/10.1109/icosnikom48755.2019.9111503
  26. Matondang, D., Saogo, D., Sianturi, R., Dapit, S., Barus, E. (2023). Analisis Pemberian Nutrisi Menggunakan Metode Fuzzy Logic Studi Kasus Tanaman Cabai. Jurnal Teknik Informasi Dan Komputer (Tekinkom), 6 (2), 408–416. Available at: https://jurnal.murnisadar.ac.id/index.php/Tekinkom/article/view/929
  27. Barus, E. S., Sahputra (2023). Sistem Monitoring Pertumbuhan Tanaman Berbasis Internet of Things. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 6 (1), 1–8. Available at: https://ejournal.sisfokomtek.org/index.php/jikom/article/view/849
  28. Huang, S., Wang, Z., Ge, Y., Wang, F. (2024). A coevolutionary estimation of distribution algorithm based on dynamic differential grouping for mixed-variable optimization problems. Expert Systems with Applications, 245, 123122. https://doi.org/10.1016/j.eswa.2023.123122
  29. Sahputra, S., Sembiring, D. C., Sipayung, I. H., Barus, E. S. (2024). Analisis Prediksi Hasil Produksi Tanaman Cabai Menggunakan Metode Multi Linier Regresi. Jurnal Teknik Informasi Dan Komputer (Tekinkom), 7 (2), 619. https://doi.org/10.37600/tekinkom.v7i2.1512
  30. Anand, V., Oinam, B., Wieprecht, S. (2024). Machine learning approach for water quality predictions based on multispectral satellite imageries. Ecological Informatics, 84, 102868. https://doi.org/10.1016/j.ecoinf.2024.102868
  31. Senanayake, I. P., Hartmann, P., Giacomini, A., Huang, J., Thoeni, K. (2024). Prediction of rockfall hazard in open pit mines using a regression based machine learning model. International Journal of Rock Mechanics and Mining Sciences, 177, 105727. https://doi.org/10.1016/j.ijrmms.2024.105727
  32. Liu, J., Zhu, C., Long, Z., Huang, H., Liu, Y. (2021). Low-rank tensor ring learning for multi-linear regression. Pattern Recognition, 113, 107753. https://doi.org/10.1016/j.patcog.2020.107753
Розробка машинного навчання для оптимізації прогнозування, реалізованого в морфології росту рослин

##submission.downloads##

Опубліковано

2025-06-30

Як цитувати

Barus, E. S., Zarlis, M., Nasution, Z., & Sutarman, S. (2025). Розробка машинного навчання для оптимізації прогнозування, реалізованого в морфології росту рослин. Eastern-European Journal of Enterprise Technologies, 3(2 (135), 42–53. https://doi.org/10.15587/1729-4061.2025.331745