Speeding up binomial compression based on binary binomial numbers

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.335729

Keywords:

adaptive compression, binomial numbers, coding selection, binomial-vector method, compression time

Abstract

This study's object is adaptive compression of general-form binary sequences based on binary binomial numbers.

The task addressed is to enable high compression speed of binary information based on binomial numbers under the condition of uncertainty in the characteristics of the binary sequences being compressed.

One of the factors that reduce the efficiency of binomial compression is uncontrolled transitions of the number of unit combinations to the region of inefficient use, the worst compression ratios.

In this regard, the work applies an adaptive approach to binomial compression, based on the choice of an encoding technique depending on the number of units of the processed sequence.

This approach yields the following result: a several-fold reduction in the amount of time spent processing binary combinations that are not compressible. Consequently, this leads to an increase in the average speed of binomial compression with a small, up to three to five percent, decrease in the compression ratio.

The adaptive compression process model includes the stages of comparing the calculated numbers of binary units with the compression conditions and selecting the coding technique based on binary binomial numbers. If the current value of the number of units goes beyond the compression conditions, the calculation of the number of units is stopped, and the processed sequence remains unchanged. This eliminates unnecessary time costs when the compression ratio becomes less than unity.

In practice, the adaptive approach to compression based on binary binomial numbers is effective in the case when the binary sequences being compressed have uncertain characteristics, and their preliminary evaluation is impossible or difficult

Author Biographies

Igor Kulyk, Sumy State University

PhD, Associate Professor

Department of Electronics and Computer Technics

Maryna Shevchenko, Sumy State University

PhD, Senior Lecturer

Department of Electronics and Computer Technics

Vitalii Grynenko, Sumy State University

PhD, Associate Professor

Department of Electronics and Computer Technics

Maksim Hermes, Sumy State University

PhD Student

Department of Electronics and Computer Technics

References

  1. Jerzy, S. A. (2013). Information Systems and Data Compression. Springer, 494. https://doi.org/10.1007/978-0-585-27999-2_6
  2. Routray, S. K., Javali, A., Sharmila, K. P., Semunigus, W., Pappa, M., Ghosh, A. D. (2020). Lossless Compression Techniques for Low Bandwidth Networks. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), 823–828. https://doi.org/10.1109/iciss49785.2020.9315936
  3. Salomon, D. (2010). Handbook of Data Compression. Springer, 1383. https://doi.org/10.1007/978-1-84882-903-9
  4. Li, Z.-N., Drew, M. S., Liu, J. (2021). Fundamentals of Multimedia. Springer International Publishing Switzerland, 824. https://doi.org/10.1007/978-3-030-62124-7
  5. Duda, J., Tahboub, K., Gadgil, N. J., Delp, E. J. (2015). The use of asymmetric numeral systems as an accurate replacement for Huffman coding. 2015 Picture Coding Symposium (PCS), 65–69. https://doi.org/10.1109/pcs.2015.7170048
  6. Mrudula, S. T., Srinivasa Murthy, K. E., Prasad, M. N. G. (2022). Optimized Context-Adaptive Binary Arithmetic Coder in Video Compression Standard Without Probability Estimation. Mathematical Modelling of Engineering Problems, 9 (2), 458–462. https://doi.org/10.18280/mmep.090222
  7. Stakhov, A. (2016). Fibonacci p-codes and Codes of the “Golden” p-proportions: New Informational and Arithmetical Foundations of Computer Science and Digital Metrology for Mission-Critical Applications. British Journal of Mathematics & Computer Science, 17 (1), 1–49. https://doi.org/10.9734/bjmcs/2016/25969
  8. Borysenko, O. A., Horiachev, O. Ye., Serdiuk, V. V., Yermakov, M. S. (2018). Information protection problems of factorial numbers. Ukrainian Scientific Journal of Information Security, 24 (3), 169–174. https://doi.org/10.18372/2225-5036.24.13069
  9. Borysenko, O., Matsenko, S., Bobrovs, V. (2021). Binomial Number System. Applied Sciences, 11 (23), 11110. https://doi.org/10.3390/app112311110
  10. Luzhetskyi, V. A., Savytska, L. A. (2015). Development and research of adaptive data compression methods based on linear fibonacci form. Eastern-European Journal of Enterprise Technologies, 1 (9 (73)), 16–22. https://doi.org/10.15587/1729-4061.2015.37026
  11. Borysenko, A. A. (2004). Bynomyalnii schet. Teoryia y praktyka. Sumi: YTD «Unyversytetskaia knyha», 170. Available at: https://essuir.sumdu.edu.ua/handle/123456789/55161
  12. Borisenko, A. A., Kulik, I. A. (2010). Binomialnoe kodirovanie. Sumy: Izd-vo SumGU, 206.
  13. Schalkwijk, J. (1972). An algorithm for source coding. IEEE Transactions on Information Theory, 18 (3), 395–399. https://doi.org/10.1109/tit.1972.1054832
  14. Cover, T. (1973). Enumerative source encoding. IEEE Transactions on Information Theory, 19 (1), 73–77. https://doi.org/10.1109/tit.1973.1054929
  15. Butler, J. T., Sasao, T. (2011). Fast constant weight codeword to index converter. 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 1–4. https://doi.org/10.1109/mwscas.2011.6026312
  16. Borysenko, O., Matsenko, S., Salgals, T., Spolitis, S., Bobrovs, V. (2022). The Lossless Adaptive Binomial Data Compression Method. Applied Sciences, 12 (19), 9676. https://doi.org/10.3390/app12199676
  17. Kulyk, I., Berezhna, O., Shevchenko, M. (2018). Development of data compressing coding methods on basis of binary binomial numbers. Technology Audit and Production Reserves, 2 (2 (46)), 12–18. https://doi.org/10.15587/2312-8372.2019.169897
  18. Kulyk, Y. A., Novhorodtsev, A. Y., Shevchenko, M. S. (2019). Method for borders estimation of compression on basis of binary binomial numbers. Systemy obrobky informatsii, 2 (157), 57–62. https://doi.org/10.30748/soi.2019.157.07
  19. Reingold, M. E., Nievegelt, J., Deo, N. (1977). Combinatorial Algorithms: Theory and Practice. Pearson College Div, 930.
  20. Kulyk, Y. A. (2004). O srednei dlyne dvoychnikh bynomyalnikh chysel. Visnyk Sumskoho derzhavnoho universytetu. Seriia «Tekhnichni nauky», 12 (71), 106–112.
Speeding up binomial compression based on binary binomial numbers

Downloads

Published

2025-08-29

How to Cite

Kulyk, I., Shevchenko, M., Grynenko, V., & Hermes, M. (2025). Speeding up binomial compression based on binary binomial numbers. Eastern-European Journal of Enterprise Technologies, 4(9 (136), 26–33. https://doi.org/10.15587/1729-4061.2025.335729

Issue

Section

Information and controlling system