Порівняльна оцінка алгоритмів машинного навчання для прогнозування врожайності пшениці з використанням кліматичних індикаторів та супутникових індексів вегетації

Автор(и)

DOI:

https://doi.org/10.15587/1729-4061.2025.340563

Ключові слова:

прогнозування врожайності пшениці, випадковий ліс, машина опорних векторів, згорткова нейронна мережа, нормалізований різницевий вегетаційний індекс, покращений вегетаційний індекс, MODIS, ERA5

Анотація

Об'єктом дослідження є прогнозування врожайності пшениці на основі інтеграції кліматичних показників, супутникових вегетаційних індексів та алгоритмів машинного навчання. Проблема, яку необхідно вирішити, полягає в обмеженій точності традиційних методів прогнозування врожайності сільськогосподарських культур, які не враховують складні нелінійні та багатовимірні взаємодії між кліматичними, біофізичними та агрономічними факторами, що зменшує їхню застосовність для завдань глобальної продовольчої безпеки. Запропонований підхід застосовується до набору даних, що містить 345 спостережень за 2001–2023 роки, поєднуючи вегетаційні індекси (MODIS), кліматичні параметри (ERA5) та офіційну статистику щодо врожайності та посівних площ.

Методологія включала описову статистику, кореляційний аналіз та моделі прогнозування на основі випадкового лісу, методу опорних векторів та згорткової нейронної мережі. Продуктивність моделі оцінювалася за допомогою коефіцієнта детермінації, середньоквадратичної помилки та середньої абсолютної помилки. Метод випадкового лісу та метод опорних векторів показали найвищу точність (R2 = 0,85 з низькими помилками), тоді як згорткова нейронна мережа була менш ефективною через обмежений набір даних. Аналіз підтвердив вирішальну роль вегетаційних індексів, особливо нормалізованого різницевого вегетаційного індексу, разом з опадами, температурою та посівними площами.

Результати вирішують виявлену прогалину в дослідженнях, демонструючи, що інтеграція кліматичних індикаторів та супутникових вегетаційних індексів значно підвищує продуктивність моделей машинного навчання для прогнозування врожайності пшениці. Зокрема, результати дослідження підкреслюють переваги ансамблевих та опорних векторних методів, які виявилися більш надійними та точними в умовах високої кліматичної мінливості.

Практична цінність полягає в потенційному використанні цих моделей у системах раннього попередження та підтримки рішень для фермерів та державних установ, покращуючи агротехнічне планування, розподіл ресурсів та зменшуючи ризики для продовольчої безпеки, тим самим сприяючи глобальній продовольчій безпеці

Біографії авторів

Nurlan Kurmanov, L.N. Gumilyov Eurasian National University

PhD Doctor, Professor

Department of Economics

Zhaxat Kenzhin, Kazakh National Sports University

PhD Doctor, Associate Professor

Department of Management and Innovation in Sports

Darkhan Baxultanov, L.N. Gumilyov Eurasian National University

PhD Doctor, Senior Lecturer

Department of Economics

Bolat Zhagalbayev, Turan-Astana University

PhD Student

Higher School of Business and Digital Technologies

Dinara Mussabalina, Abai Kazakh National Pedagogical University

PhD, Postdoctoral Researcher

Department of Economic Specialties

Meruyert Zhagalbayeva, Northwest A&F University

Researcher

College of Economics and Management

Galiya Amrenova, L.N. Gumilyov Eurasian National University

Senior Lecturer

Department of Economics

Посилання

  1. Molotoks, A., Smith, P., Dawson, T. P. (2020). Impacts of land use, population, and climate change on global food security. Food and Energy Security, 10 (1). https://doi.org/10.1002/fes3.261
  2. Yu, W., Yue, Y., Wang, F. (2022). The spatial-temporal coupling pattern of grain yield and fertilization in the North China plain. Agricultural Systems, 196, 103330. https://doi.org/10.1016/j.agsy.2021.103330
  3. Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid, S. et al. (2022). Compound heat and moisture extreme impacts on global crop yields under climate change. Nature Reviews Earth & Environment, 3 (12), 872–889. https://doi.org/10.1038/s43017-022-00368-8
  4. Malhi, G. S., Kaur, M., Kaushik, P. (2021). Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability, 13 (3), 1318. https://doi.org/10.3390/su13031318
  5. Tamayo-Vera, D., Wang, X., Mesbah, M. (2024). A Review of Machine Learning Techniques in Agroclimatic Studies. Agriculture, 14 (3), 481. https://doi.org/10.3390/agriculture14030481
  6. Shammi, S. A., Meng, Q. (2021). Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecological Indicators, 121, 107124. https://doi.org/10.1016/j.ecolind.2020.107124
  7. Swoish, M., Da Cunha Leme Filho, J. F., Reiter, M. S., Campbell, J. B., Thomason, W. E. (2022). Comparing satellites and vegetation indices for cover crop biomass estimation. Computers and Electronics in Agriculture, 196, 106900. https://doi.org/10.1016/j.compag.2022.106900
  8. Fadl, M. E., AbdelRahman, M. A. E., El-Desoky, A. I., Sayed, Y. A. (2024). Assessing soil productivity potential in arid region using remote sensing vegetation indices. Journal of Arid Environments, 222, 105166. https://doi.org/10.1016/j.jaridenv.2024.105166
  9. Jabed, Md. A., Azmi Murad, M. A. (2024). Crop yield prediction in agriculture: A comprehensive review of machine learning and deep learning approaches, with insights for future research and sustainability. Heliyon, 10 (24), e40836. https://doi.org/10.1016/j.heliyon.2024.e40836
  10. Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., Cina, E. et al. (2023). Crop Prediction Model Using Machine Learning Algorithms. Applied Sciences, 13 (16), 9288. https://doi.org/10.3390/app13169288
  11. Asamoah, E., Heuvelink, G. B. M., Chairi, I., Bindraban, P. S., Logah, V. (2024). Random forest machine learning for maize yield and agronomic efficiency prediction in Ghana. Heliyon, 10 (17), e37065. https://doi.org/10.1016/j.heliyon.2024.e37065
  12. Guo, Y. (2023). Integrating genetic algorithm with ARIMA and reinforced random forest models to improve agriculture economy and yield forecasting. Soft Computing, 28 (2), 1685–1706. https://doi.org/10.1007/s00500-023-09516-8
  13. Ingole, V. S., Kshirsagar, U. A., Singh, V., Yadav, M. V., Krishna, B., Kumar, R. (2024). A Hybrid Model for Soybean Yield Prediction Integrating Convolutional Neural Networks, Recurrent Neural Networks, and Graph Convolutional Networks. Computation, 13 (1), 4. https://doi.org/10.3390/computation13010004
  14. Uluocak, I., Bilgili, M. (2023). Daily air temperature forecasting using LSTM-CNN and GRU-CNN models. Acta Geophysica, 72 (3), 2107–2126. https://doi.org/10.1007/s11600-023-01241-y
  15. Abdel-salam, M., Kumar, N., Mahajan, S. (2024). A proposed framework for crop yield prediction using hybrid feature selection approach and optimized machine learning. Neural Computing and Applications, 36 (33), 20723–20750. https://doi.org/10.1007/s00521-024-10226-x
  16. Celis, J., Xiao, X., Wagle, P., Adler, P. R., White, P. (2024). A Review of Yield Forecasting Techniques and Their Impact on Sustainable Agriculture. Transformation Towards Circular Food Systems, 139–168. https://doi.org/10.1007/978-3-031-63793-3_8
  17. Ashfaq, M., Khan, I., Alzahrani, A., Tariq, M. U., Khan, H., Ghani, A. (2024). Accurate Wheat Yield Prediction Using Machine Learning and Climate-NDVI Data Fusion. IEEE Access, 12, 40947–40961. https://doi.org/10.1109/access.2024.3376735
  18. Jiang, P., Yuan, Y., Li, Q. (2024). Advanced precipitation enhances vegetation primary productivity in Central Asia. Ecological Indicators, 166, 112276. https://doi.org/10.1016/j.ecolind.2024.112276
  19. Nurbekov, A., Kosimov, M., Islamov, S., Khaitov, B., Qodirova, D., Yuldasheva, Z. et al. (2024). No-till, crop residue management and winter wheat-based crop rotation strategies under rainfed environment. Frontiers in Agronomy, 6. https://doi.org/10.3389/fagro.2024.1453976
  20. Su, F., Liu, Y., Chen, L., Orozbaev, R., Tan, L. (2023). Impact of climate change on food security in the Central Asian countries. Science China Earth Sciences, 67 (1), 268–280. https://doi.org/10.1007/s11430-022-1198-4
  21. Sánchez, J. C. M., Mesa, H. G. A., Espinosa, A. T., Castilla, S. R., Lamont, F. G. (2025). Improving wheat yield prediction through variable selection using Support Vector Regression, Random Forest, and Extreme Gradient Boosting. Smart Agricultural Technology, 10, 100791. https://doi.org/10.1016/j.atech.2025.100791
  22. Sonmez, M. E., Sabanci, K., Aydin, N. (2024). Convolutional neural network-support vector machine-based approach for identification of wheat hybrids. European Food Research and Technology, 250 (5), 1353–1362. https://doi.org/10.1007/s00217-024-04473-4
  23. Ashfaq, M., Khan, I., Shah, D., Ali, S., Tahir, M. (2025). Predicting wheat yield using deep learning and multi-source environmental data. Scientific Reports, 15 (1). https://doi.org/10.1038/s41598-025-11780-7
  24. Nigam, S., Jain, R., Singh, V. K., Marwaha, S., Arora, A., Jain, S. (2024). EfficientNet architecture and attention mechanism-based wheat disease identification model. Procedia Computer Science, 235, 383–393. https://doi.org/10.1016/j.procs.2024.04.038
  25. Ma, J., Zhao, Y., Cui, B., Liu, L., Ding, Y., Chen, Y., Zhang, X. (2025). Prediction of Drought Thresholds Triggering Winter Wheat Yield Losses in the Future Based on the CNN-LSTM Model and Copula Theory: A Case Study of Henan Province. Agronomy, 15 (4), 954. https://doi.org/10.3390/agronomy15040954
  26. Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA SP-351, 309–317. Available at: https://ntrs.nasa.gov/citations/19740022614
  27. Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83 (1-2), 195–213. https://doi.org/10.1016/s0034-4257(02)00096-2
  28. Kussainov, T. A., Maitah, M., Kurmanov, N. A., Hájek, P., Tolysbaev, B. S., Baidakov, A. K. (2015). Economic Analysis of the Impact of Changing Production Conditions on Wheat Productivity Level. Review of European Studies, 7 (11). https://doi.org/10.5539/res.v7n11p125
  29. Kurmanov, N., Bakirbekova, A., Adiyetova, E., Satbayeva, A., Rakhimbekova, A., Nabiyeva, M. (2025). ICTs’ Impact on Energy Consumption and Economic Growth in the Countries of Central Asia: An Empirical Analysis. International Journal of Energy Economics and Policy, 15 (3), 8–16. https://doi.org/10.32479/ijeep.18779
  30. Kurmanov, N., Kabdullina, G., Baidakov, A., Kabdolla, A. (2025). Renewable Energy, Green Economic Growth and Food Security in Central Asian Countries: An Empirical Analysis. International Journal of Energy Economics and Policy, 15 (2), 1–8. https://doi.org/10.32479/ijeep.17922
Порівняльна оцінка алгоритмів машинного навчання для прогнозування врожайності пшениці з використанням кліматичних індикаторів та супутникових індексів вегетації

##submission.downloads##

Опубліковано

2025-10-29

Як цитувати

Kurmanov, N., Kenzhin, Z., Baxultanov, D., Zhagalbayev, B., Mussabalina, D., Zhagalbayeva, M., & Amrenova, G. (2025). Порівняльна оцінка алгоритмів машинного навчання для прогнозування врожайності пшениці з використанням кліматичних індикаторів та супутникових індексів вегетації. Eastern-European Journal of Enterprise Technologies, 5(13 (137), 72–80. https://doi.org/10.15587/1729-4061.2025.340563

Номер

Розділ

Трансфер технологій: промисловість, енергетика, нанотехнології