The study of functional-technological properties of encapsulated vegetable oils
DOI:
https://doi.org/10.15587/1729-4061.2015.56198Keywords:
oils, fats, encapsulation, system, subsystem, semi-finished product, technology, product, properties, polysaccharidesAbstract
Functional-technological properties of encapsulated vegetable oils expand the probability of using the product as a semi-finished product of a high degree of readiness in technologies of culinary products such as leafy vegetable salads, different in pH, sales temperature.
Implementation of elastoplastic properties of the product shell ensures the integrity (if necessary) of capsules during mechanical mixing; adhesive properties of the capsule shell provide intactness of the internal oil and fat component, which is effectively practiced in the technologies of extended shelf-life foods.
Using sodium alginate and realizing its chemical potential in the technology provides thermostable properties of the shell of encapsulated oil and fat product, which expands the range of new types of fats and culinary products with improved consumer properties and extended shelf life.
References
- Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5 (6), 709–725.
- Shewfelt, R. L., Del Rosario, B. A. (2000). The role of lipid peroxidation in storage disorders of fresh fruits and vegetables. HortScience, 35 (4), 575–579.
- Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48 (12), 909–930. doi: 10.1016/j.plaphy.2010.08.016
- Sharma, P., Jha, A. B., Dubey, R. S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 217037, doi: 10.1155/2012/217037
- Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant physiology, 101 (1), 7.
- Hodges, D. M., DeLong, J. M. (2007). The relationship between antioxidants and postharvest storage quality of fruits and vegetables. Stewart Postharvest Review, 3 (3), 1–9. doi: 10.2212/spr.2007.3.12
- Lester, G. E. (2003). Oxidative stress affecting fruit senescence. In Hodges D. M. ed. Postharvest oxidative stress in horticultural crops. New York: Food Products Press, 113–129.
- Sugar, D. (2009). Influence of temperature and humidity in management of postharvest decay. Stewart Postharvest Review, 5 (2), 1–5. doi: 10.2212/spr.2009.2.1
- Kanlayanarat, S., Rolle, R., Acedo, Jr A. (2009). Horticultural chain management for countries of Asia and the Pacific region: a training package. Rome, Italy: FAO, 214
- McCollum, T. G. (2007). Squash. In Gross, K. C., Wang, C. Y., Saltveit, M. eds. Agricultural handbook number 66: The commercial storage of fruits, vegetables, and florist and nursery stocks. Washington, DC. Аvailable at: http://www.ba.ars.usda.gov/hb66/squash.pdf
- Carvajal, F., Martinez, C., Jamilena, M., Garrido, D. (2011). Differential response of zucchini varieties to low storage temperature. Scientia Horticulturae, 130 (1), 90–96. doi: 10.1016/j.scienta.2011.06.016
- Brew, B. S., Berry, A. D., Sargent, S. A., Shaw, N. L., Cantliffe, D. J. (2006). Determination of optimum storage conditions for ‘baby’summer squash fruit (Cucurbita pepo). Proc. Florida State Hort. Soc., 119, 343–346.
- Lurie, S., Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments. Horticulture Research, 1. doi: 10.1038/hortres.2014.30
- Wang, C. Y. (1995). Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilled zucchini squash. Postharvest Biol. Technol., 5 (1), 67–76. doi: 10.1016/0925–5214(94)00020–S
- Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology, 14 (3), 257–269. doi: 10.1016/S0925–5214(98)00045–3
- Wang, C. Y. (1994). Combined treatment of heat shock and low temperature conditioning reduces chilling injury in zucchini squash. Postharvest Biology and Technology, 4 (1), 65–73. doi: 10.1016/0925–5214(94)90008–6
- Laamim, M., Lapsker, Z., Fallik, E., Ait–Oubahou, A., Lurie, S. (1998). Treatments to reduce chilling injury in harvested cucumbers. Advances in horticultural science, 12 (4), 175–178.
- Priss, O. P., Prokudina,T. F., Zhukova, V. F. (2009). Substance for the treatment of fruit vegetables before storage. Pat. 41177 Ukraine, IPC А23В 7/00, А23L 3/34. u 200813962; declared 04.12.2008; published 12.05.09, № 9.
- Dykyi, I. L., Ostapenko, V. M., Filimonova, N. I., Heyderikh, O. H., Kovalov, V. V. (2005). Microbiological study a chlorophyllipt for prepare a soft form of anti–infective drug. Journal of Pharmacy, 4, 73–76.
- Sanitary rules and regulations on the use of food additives: approved Ministry of Health of Ukraine 23.07.96 № 222. Available at: http://zakon4.rada.gov.ua/laws/show/z0715–96.
- Gonzalez–Aguilar, G. A., Cruz, R., Baez, R., Wang, C. Y. (1999). Storage quality of bell peppers pretreated with hot water and polyethylene packaging. Journal of food quality, 22 (3), 287–299. doi: 10.1111/j.1745–4557.1999.tb00558.x
- Musiienko, M. M., Parshykova, T. V., Slavnyi, P. C. (2001). Spectrophotometric methods in practice, physiology, biochemistry and ecology of plants. Kyiv: Fitosotsiotsentr, 200.
- Sirota, T. V. (2000). A method for determining the antioxidant activity of superoxide dismutase and chemical compounds. Russian Federation Patent 2144674. МПК7 G 01 N33/52, G 01 N33/68. № 99103192/14; declared 24.02.1999; publashed 20.01.2000, № 2, 2.
- Hrytsayenko, Z. M., Hrytsayenko, A. O., Karpenko,V. P. (2003). Methods of biological and agrochemical research plants and soils. Kyiv: NIChLAVA, 320.
- Zemljanuhin, A. A. (1985). Small workshop on Biochemistry. Voronezh: VHU, 128.
- Balandrán–Quintana, R. R., Mendoza–Wilson, A. M., Gardea–Béjar, A. A., Vargas–Arispuro, I., Martı́nez–Téllez, M. A. (2003). Irreversibility of chilling injury in zucchini squash (Cucurbita pepo L.) could be a programmed event long before the visible symptoms are evident. Biochemical and biophysical research communications, 307 (3), 553–557. doi: 10.1016/S0006–291X(03)01212–9
- Del Rio, D., Stewart, A. J., Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 15 (4), 316–328. doi: 10.1016/j.numecd.2005.05.003
- Casano, L. M., Martin, M., Sabater, B. (1994). Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature–senescent than in young barley leaves. Plant Physiology, 106 (3), 1033–1039. doi: 10.1104/pp.106.3.1033
- Gualanduzzi, S., Baraldi, E., Braschi, I., Carnevali, F., Gessa, C. E., De Santis, A. (2009). Respiration, hydrogen peroxide levels and antioxidant enzyme activities during cold storage of zucchini squash fruit. Postharvest Biol. Technol., 52 (1), 16–23. doi: 10.1016/j.postharvbio.2008.09.010
- Zheng, Y., Fung, R. W., Wang, S. Y., Wang, C. Y. (2008). Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen. Postharvest Biol. Technol., 47 (2), 151–158. doi: 10.1016/j.postharvbio.2007.06.016
- Keren‐Keiserman, A., Tanami, Z., Shoseyov, O., Ginzberg, I. (2004). Peroxidase activity associated with suberization processes of the muskmelon (Cucumis melo) rind. Physiologia plantarum, 121 (1), 141–148. doi: 10.1111/j.0031–9317.2004.00301.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Євгенія Олександрівна Коротаєва, Ольга Павлівна Неклеса, Ольга Олексіївна Гринченко, Павло Петрович Пивоваров
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.