The study of functional-technological properties of encapsulated vegetable oils

Authors

  • Євгенія Олександрівна Коротаєва Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0003-3166-0282
  • Ольга Павлівна Неклеса Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0003-2442-7642
  • Ольга Олексіївна Гринченко Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0002-9549-8678
  • Павло Петрович Пивоваров Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.56198

Keywords:

oils, fats, encapsulation, system, subsystem, semi-finished product, technology, product, properties, polysaccharides

Abstract

Functional-technological properties of encapsulated vegetable oils expand the probability of using the product as a semi-finished product of a high degree of readiness in technologies of culinary products such as leafy vegetable salads, different in pH, sales temperature.

Implementation of elastoplastic properties of the product shell ensures the integrity (if necessary) of capsules during mechanical mixing; adhesive properties of the capsule shell provide intactness of the internal oil and fat component, which is effectively practiced in the technologies of extended shelf-life foods.

Using sodium alginate and realizing its chemical potential in the technology provides thermostable properties of the shell of encapsulated oil and fat product, which expands the range of new types of fats and culinary products with improved consumer properties and extended shelf life.

Author Biographies

Євгенія Олександрівна Коротаєва, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Postgraduate student

Department of Food Technology

Ольга Павлівна Неклеса, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of technology of bread, confectionery, pasta and food concentrates

Ольга Олексіївна Гринченко, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Food Technology

Павло Петрович Пивоваров, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Kharkiv State University of Food Technology and Trade

333 Klochkivska str., Kharkiv, Ukraine, 61051

References

  1. Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5 (6), 709–725.
  2. Shewfelt, R. L., Del Rosario, B. A. (2000). The role of lipid peroxidation in storage disorders of fresh fruits and vegetables. HortScience, 35 (4), 575–579.
  3. Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48 (12), 909–930. doi: 10.1016/j.plaphy.2010.08.016
  4. Sharma, P., Jha, A. B., Dubey, R. S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 217037, doi: 10.1155/2012/217037
  5. Scandalios, J. G. (1993). Oxygen stress and superoxide dismutases. Plant physiology, 101 (1), 7.
  6. Hodges, D. M., DeLong, J. M. (2007). The relationship between antioxidants and postharvest storage quality of fruits and vegetables. Stewart Postharvest Review, 3 (3), 1–9. doi: 10.2212/spr.2007.3.12
  7. Lester, G. E. (2003). Oxidative stress affecting fruit senescence. In Hodges D. M. ed. Postharvest oxidative stress in horticultural crops. New York: Food Products Press, 113–129.
  8. Sugar, D. (2009). Influence of temperature and humidity in management of postharvest decay. Stewart Postharvest Review, 5 (2), 1–5. doi: 10.2212/spr.2009.2.1
  9. Kanlayanarat, S., Rolle, R., Acedo, Jr A. (2009). Horticultural chain management for countries of Asia and the Pacific region: a training package. Rome, Italy: FAO, 214
  10. McCollum, T. G. (2007). Squash. In Gross, K. C., Wang, C. Y., Saltveit, M. eds. Agricultural handbook number 66: The commercial storage of fruits, vegetables, and florist and nursery stocks. Washington, DC. Аvailable at: http://www.ba.ars.usda.gov/hb66/squash.pdf
  11. Carvajal, F., Martinez, C., Jamilena, M., Garrido, D. (2011). Differential response of zucchini varieties to low storage temperature. Scientia Horticulturae, 130 (1), 90–96. doi: 10.1016/j.scienta.2011.06.016
  12. Brew, B. S., Berry, A. D., Sargent, S. A., Shaw, N. L., Cantliffe, D. J. (2006). Determination of optimum storage conditions for ‘baby’summer squash fruit (Cucurbita pepo). Proc. Florida State Hort. Soc., 119, 343–346.
  13. Lurie, S., Pedreschi, R. (2014). Fundamental aspects of postharvest heat treatments. Horticulture Research, 1. doi: 10.1038/hortres.2014.30
  14. Wang, C. Y. (1995). Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilled zucchini squash. Postharvest Biol. Technol., 5 (1), 67–76. doi: 10.1016/0925–5214(94)00020–S
  15. Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology, 14 (3), 257–269. doi: 10.1016/S0925–5214(98)00045–3
  16. Wang, C. Y. (1994). Combined treatment of heat shock and low temperature conditioning reduces chilling injury in zucchini squash. Postharvest Biology and Technology, 4 (1), 65–73. doi: 10.1016/0925–5214(94)90008–6
  17. Laamim, M., Lapsker, Z., Fallik, E., Ait–Oubahou, A., Lurie, S. (1998). Treatments to reduce chilling injury in harvested cucumbers. Advances in horticultural science, 12 (4), 175–178.
  18. Priss, O. P., Prokudina,T. F., Zhukova, V. F. (2009). Substance for the treatment of fruit vegetables before storage. Pat. 41177 Ukraine, IPC А23В 7/00, А23L 3/34. u 200813962; declared 04.12.2008; published 12.05.09, № 9.
  19. Dykyi, I. L., Ostapenko, V. M., Filimonova, N. I., Heyderikh, O. H., Kovalov, V. V. (2005). Microbiological study a chlorophyllipt for prepare a soft form of anti–infective drug. Journal of Pharmacy, 4, 73–76.
  20. Sanitary rules and regulations on the use of food additives: approved Ministry of Health of Ukraine 23.07.96 № 222. Available at: http://zakon4.rada.gov.ua/laws/show/z0715–96.
  21. Gonzalez–Aguilar, G. A., Cruz, R., Baez, R., Wang, C. Y. (1999). Storage quality of bell peppers pretreated with hot water and polyethylene packaging. Journal of food quality, 22 (3), 287–299. doi: 10.1111/j.1745–4557.1999.tb00558.x
  22. Musiienko, M. M., Parshykova, T. V., Slavnyi, P. C. (2001). Spectrophotometric methods in practice, physiology, biochemistry and ecology of plants. Kyiv: Fitosotsiotsentr, 200.
  23. Sirota, T. V. (2000). A method for determining the antioxidant activity of superoxide dismutase and chemical compounds. Russian Federation Patent 2144674. МПК7 G 01 N33/52, G 01 N33/68. № 99103192/14; declared 24.02.1999; publashed 20.01.2000, № 2, 2.
  24. Hrytsayenko, Z. M., Hrytsayenko, A. O., Karpenko,V. P. (2003). Methods of biological and agrochemical research plants and soils. Kyiv: NIChLAVA, 320.
  25. Zemljanuhin, A. A. (1985). Small workshop on Biochemistry. Voronezh: VHU, 128.
  26. Balandrán–Quintana, R. R., Mendoza–Wilson, A. M., Gardea–Béjar, A. A., Vargas–Arispuro, I., Martı́nez–Téllez, M. A. (2003). Irreversibility of chilling injury in zucchini squash (Cucurbita pepo L.) could be a programmed event long before the visible symptoms are evident. Biochemical and biophysical research communications, 307 (3), 553–557. doi: 10.1016/S0006–291X(03)01212–9
  27. Del Rio, D., Stewart, A. J., Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 15 (4), 316–328. doi: 10.1016/j.numecd.2005.05.003
  28. Casano, L. M., Martin, M., Sabater, B. (1994). Sensitivity of superoxide dismutase transcript levels and activities to oxidative stress is lower in mature–senescent than in young barley leaves. Plant Physiology, 106 (3), 1033–1039. doi: 10.1104/pp.106.3.1033
  29. Gualanduzzi, S., Baraldi, E., Braschi, I., Carnevali, F., Gessa, C. E., De Santis, A. (2009). Respiration, hydrogen peroxide levels and antioxidant enzyme activities during cold storage of zucchini squash fruit. Postharvest Biol. Technol., 52 (1), 16–23. doi: 10.1016/j.postharvbio.2008.09.010
  30. Zheng, Y., Fung, R. W., Wang, S. Y., Wang, C. Y. (2008). Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to superatmospheric oxygen. Postharvest Biol. Technol., 47 (2), 151–158. doi: 10.1016/j.postharvbio.2007.06.016
  31. Keren‐Keiserman, A., Tanami, Z., Shoseyov, O., Ginzberg, I. (2004). Peroxidase activity associated with suberization processes of the muskmelon (Cucumis melo) rind. Physiologia plantarum, 121 (1), 141–148. doi: 10.1111/j.0031–9317.2004.00301.x

Published

2015-12-18

How to Cite

Коротаєва, Є. О., Неклеса, О. П., Гринченко, О. О., & Пивоваров, П. П. (2015). The study of functional-technological properties of encapsulated vegetable oils. Eastern-European Journal of Enterprise Technologies, 6(10(78), 16–23. https://doi.org/10.15587/1729-4061.2015.56198

Issue

Section

Technology and Equipment of Food Production