Effect of Q&P treatment on microstructure and mechanical properties of low-carbon TRIP-assisted steel

Authors

  • R.O. Kussa State Higher Education Institution "Priazovskyi state technical university", Mariupol, Ukraine

DOI:

https://doi.org/10.31498/2225-6733.42.2021.240569

Keywords:

Q&P-treatment, ferrite, martensite, austenite, strength, ductility, impact toughness

Abstract

. The article describes the effect of heat treatment according the «Quenching and Partitioning» (Q&P) technology on the phase-structural status and mechanical properties of low-alloy 20Si2Mn2Nb steel. It is found that the standard heat treatment which is an isothermal annealing at 300°C (holding for 20 min) after heating in intercritical temperature range (ITR) provides a moderate complex of mechanical properties at low impact toughness. The heat treatment according to the ITR/Q&P scheme (austenitization in intercritical temperature range with a quenching cooling to 200°C and subsequent holding at 350-400°C for 5-20 min) significantly increases the ductile behavior of low carbon TRIP-assisted steels compared to its standard heat treatment. The positive effect of ITR/Q&P heat treatment on steel ductility was caused by the presence of high content of ductile ferrite (54,4 vol. %) in the steel structure. Heat treatment according to the FA/Q&P scheme (FA-full austenitization) with quenching cooling to 235°C and subsequent holding at 350-400°C for 5-20 minutes provided a considerable increase in the strength properties and impact toughness of steel. High strength level was ensured by the formation of a multiphase structure with a high volume fraction of hard martensite phase. The maximum combination of strength and ductility (PSE » 20 GPa·%) was provided by ITR/Q&P treatment conducted according to modes A770Q200P400(5 min) and A770Q200P400(20 min). The improvement in mechanical properties was associated with the formation of multiphase micro-structure which contains an increased amount of retained austenite. It is shown that Q&P treatment with heating in the intercritical temperature range notably improved a steel ability to work-hardening under cold plastic deformation

Author Biography

R.O. Kussa, State Higher Education Institution "Priazovskyi state technical university", Mariupol

Аспірант

References

Lesch C. Advanced high strength steels (AHSS) for automotive applications − tailored prop-erties by smart microstructural adjustments / C. Lesch, N. Kwiaton, F.B. Klose // Steel Re-search International. – 2017. – № 88 (10). – P. 1700210. – Mode of access: https://doi.org/10.1002/srin.201700210.

Современные конструкционные стали с TRIP-эффектом / В.И. Зурнаджи [и др.] // Наука и прогресс транспорта. Вестник Днепропетровского национального университета же-лезнодорожного транспорта. – 2020. – № 5 (89). – С. 80-92. – Mode of access: https://doi.org/10.15802/stp2020.

Bhadeshia H.K.D.H. TRIP-assisted steels? / H.K.D.H. Bhadeshia // ISIJ international. – 2002. – № 42 (9). – Pp. 1059-1060.

Mechanical properties of carbide-free lower bainite in complex-alloyed constructional steel: Effect of bainitizing treatment parameters / V.I. Zurnadzhy [etc.] // Kovove Mater. – 2020. – № 58. – Pp. 129-140. – Mode of access: https://doi.org/10.4149/km_2020_2_129.

Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with differ-ent chromium contents / V. Efremenko [etc.] // International Journal of Materials Research. – 2018. – № 109 (2). – Pp. 147-156. – Mode of access: https://doi.org/10.3139/146.111583.

Bainit in Stählen mit hohem Widerstand gegen Abrasivverschleiß (Bainite in Steels with High Resistance to Abrsive Wear) / O. Hesse [etc.] // Tribologie und Schmierungstechnik. – 2016. – № 63 (2). – Рp. 5-13.

Chabak Yu.G. Change of Secondary-Carbides’ Nanostate in 14.5% Cr Cast Iron at High-Temperature Heating / Yu.G. Chabak, V.G. Efremenko // Metallofizika i Noveishie Tekhnologii. – 2012. – № 34. – Р. 1205-1220.

Malinov L.S. Influence of isothermal quenching modes on the wear resistance of high-strength cast iron / L.S. Malinov, D.V. Burova, V.D. Gomanyuk, D.S. Semenkov // Journal of Friction and Wear. – 2020. – № 41. – Рp. 129-133. – Mode of access: https://doi.org/10.3103/S1068366620020087.

Cheiliakh O.P. Implementation of physical effects in the operation of smart materials to form their properties / O.P. Cheiliakh, Ya.O. Cheiliakh // Progress in Physics of Metals. – 2020. – Vol. 21. – №. 3. – Pp. 363-463. – Mode of access: https://doi.org/10.15407/ufm.21.03.363.

Malinov L.S. Impact of metastable austenite on the wear resistance of tool steel / L.S. Mali-nov, V.L. Malinov, D.V. Burova // Journal of Friction and Wear. – 2018. – № 39 (4). – Рp. 349-353. – Mode of access: https://doi.org/10.3103/S1068366618040098.

Matsumura O. Trip and its kinetic aspects in austempered 0.4 C-1.5 Si-0.8 Mn steel / O. Matsumura, Y. Sakuma, H. Takechi // Scripta Metallurgica. – 1987. – № 21 (10). – Рp. 1301-1306.

Bleck W. The TRIP effect and its application in cold formable sheet steels / W. Bleck, X. Guo, Y. Ma // Steel Research International. – 2017. – № 88 (10). – Рp. 1-10. – Mode of ac-cess: https://doi.org/10.1002/srin.201700218.

Austenite Transformation Behavior and Mechanical Properties of Constructional V, Nb-Alloyed TRIP-Assisted Steel / R. Kussa [etc.] // Key Engineering Materials. – 2020. – № 864. – Рp. 241-249. – Mode of access: https://doi.org/10.4028/www.scientific.net/KEM.864.241.

Speer J.G. Carbon partitioning into austenite after martensite transformation / J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth // Acta Materialia. – 2003. – № 51 (9). –Рp. 2611-2622.

Speer J.G. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation / J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock // Current Opinion in Solid State and Materials Science. – 2004. – № 8 (3-4). – Рp. 219-237.

Correlation of isothermal bainite transformation and austenite stability in quenching and par-titioning steels / S. Chen [etc.] // Journal of Iron and Steel Research International. – 2017. – № 24 (11). – Рp. 1095-1103. – Mode of access: https://doi.org/10.1016/S1006-706X(17)30159-0.

Bhadeshia H.K.D.H. Bainite in steels: theory and practice / H.K.D.H. Bhadeshia. – CRC Press, 2015. – 616 p.

Microstructure evolution and mechanical behavior of a novel hot-galvanized Q&P steel sub-jected to high-temperature short-time overaging treatment / Y. Wang [etc.] // Materials Sci-ence and Engineering: A. – 2020. – № 789. – Рp. 139665. – Mode of access: https://doi.org/10.1016/j.msea.2020.139665.

Effects of stress relief tempering on microstructure and tensile/impact behavior of quenched and partitioned commercial spring steel / V.I. Zurnadzhy [etc.] // Materials Science and Engi-neering: A. – 2019. – № 745. – Рp. 307-318. – Mode of access: https://doi.org/10.1016/j.msea.2018.12.106.

Tailoring strength/ductility combination in 2.5 wt% Si-alloyed middle carbon steel produced by the two-step QP treatment with a prolonged partitioning stage / V.I. Zurnadzhy [etc.] // Materials Science and Engineering: A. – 2020. – № 791. – Рp. 139721. – Mode of access: https://doi.org/10.1016/j.msea.2020.139721.

High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quench-ing–partitioning-tempering process / S. Zhou [etc.] // Materials Science and Engineering: A. – 2011. – № 528. – Рp. 8006-8012. – Mode of access: https://doi.org/10.1016/j.msea.2011.07.008.

Золотаревский В.С. Механические свойства металлов / В.С. Золоторевский. – М. : МИСИС, 1998. – 400 с.

Bhargava M. Forming limit diagram of Advanced High Strength Steels (AHSS) based on strain-path diagram / M. Bhargava, A. Tewari, S.K. Mishra // Materials & Design. – 2015. – № 85. – Рp. 149-155. – Mode of access: https://doi.org/10.1016/j.matdes.2015.06.147.

Published

2021-05-27

How to Cite

Kussa, R. . (2021). Effect of Q&P treatment on microstructure and mechanical properties of low-carbon TRIP-assisted steel. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, (42), 28–36. https://doi.org/10.31498/2225-6733.42.2021.240569